AD-A139 019 ALTERNATIVE KNOWLEDGE ACQUISITION INTERFACE STRUCTURES 1/}
{U) PERCEPTRONICS INC MENLO PARK CA KNOWLEDGE SYSTEMS
BRANCH K T WESCOURT ET AL. DEC 83 PPAFTR- 1131 83-1
UNCLASSIFIED NAVTRAEQUIPC-82-C-0151-1 F/G 5/9

T
g £
L

=
L2 s b

‘e

==
B E

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1363-4

PN

- SOVERMENT RIGHTS v pATA STATEMENT ‘ |
e ‘Wtimofathis iblication in |
aihglg or in part fs p:ur:ftm for any

") purpese of tg: United States Government.,

5

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE pErCEAD INSTRUCTIONS
REFPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

NAVTRAEQUIPCEN 82-C-0151-1 0_/2 /3 7@/7

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
ALTERNATIVE KNOWLEDGE ACQUISITION INTERFACE Final Technical Report
STRUCTURES Sep 1982 to Sep 1983

€. PERFORMING ORG. REPORT NUMBER
PPAFTR-1131-83-1

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Keith T. Wescourt N61339-82-C-0151~1

Perry W. Thorndyke

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
Perceptronics, Inc. AREA & WORK UNIT NUMBERS
Knowledge Systems Branch

545 Middlefield Road, Suite 140
Menlo Park, CA 94025
. 11 CONTROLLING OFFICE NAME AND ADDRESS '2. REPORT DATE
Naval Training Equipment Center December 1983
Oriando, FL 32813 13. NUMBER OF PAGES i
99]

1€ MCNITORING AGENCY NAME & ADDRESS(/f dillerent from Controlling Office) 15. SECURITY CLASS, (of this report)

DCASMA Van Nuys UNCLASSIFIED

6230 Van Nuys Blvd. ‘
Van Nuys, CA 91408 184 DECL ASSIFICATION DOWNGRADING

16. DISTRIBUTION STATEMENT rof thia Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different trom Repart)

———

'8 SUPPLEMENTARY NOTES

,.";-.._;}. Er—‘;’;‘m-', ’—(..—nnllnu' un reverse nide if neceassary and identify by block number)
Ynowledqe Acquisition

Artificial Intelligence

. Training & Simulation

Expert Systems

20 ABSTRALT rContinua on reverse side If necesaary and identily by block number)

—_b> This research developed a design concept for an interactive system to acquire
domain knowledge from a training expert. Such a system would facilitate the
development of knowledge-based instructional systems by directly eliciting and
encoding from domain experts knowledge needed to deliver instruction. An
analysis of the process by which knowledge-based systems are constructed
indicates that (&) the generality of a knowledge acquisition system must be
limited by domain characteristics and by the architecture of the system it — L LE

0D (%35 W73 eomonor iwovesisomsoiere ey asSFIED

SECURITY CLABSIFICATION OF THiIS PAGE (When Daca tncered:

e e A

UNCLASSIFIED :

SEC‘RITV CLASSIFICATION OF THIS PAGE(When Dats Entered)

20&\:3?STRACT CONTINUED

e e

serves, and Lﬁb/the non-sequential, interacting activities during system
development constrain the potential role of automated knowledge acquisi-
tion aids. A feasible concept for knowledge acquisition technology,
building on prior research in artificial intelligence, involves the notion
of class-generic systems for a related set of domains with a fixed archi-
tecture and training capabilities. This concept is developed and dis-
cussed in the context of proposed Navy training systems for acquiring

L&) models of trainee performance during learning, {£) rules of behavior
for an automated opponent in a tactics trainer, and a knowledge base of
facts to be subsequently presented to trainees for memarization, Data
obtained from Navy domain experts and system builders indicate that the
utility of knowledge acquisition systems to Navy domain experts Will
depend primarily on user skills and motivation and on the amount of
conceptual support provided by the system's user interface. In contrast,
low-level details of interaction medium and protocol are anticipated to
be of secondary importance. y

ST T S VOR,

Accession qu

Miitububitidl i
NTIS GRAXI

DTIC TAB

Unannounced O
Justification]

By.
Distribut 7i'on__/ i
Availabilitg COde§

Avail and/or '

Dist Special

1T
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Deta Entered)

NAVTRAEQUIPCEN 82-C-0151-1

SUMMARY

Many Mavy tasks depend on the skilled performance of highly-trained
individuals. Training For such tasks often requires closely supervised,
intensive, and highly technical instruction from a knowledgeable instructor.
In many cases, skilled Navy instructors are in short supply--and the quality
of instruction can vary from individual to individual.

Recent advances in computer science and psychology have created the
opportunity to develop "inte11igent" computer-based instructional systems.
Such systems can not only identify trainee errors during instructional
sessions but also understand why the trainee has erred based on its knowledge
of the task and a model! of the trainee's cognitive processes. Such diagnoses
are critical to correcting a trainee's misunderstanding or specific skill
deficiency about the task he is trying to learn.

The development of such computer-based instructional systems requires the
accumulation and codification of extensive knowledge about the target task and
trainees' behavior when learning the task. Such knowledge--essentially that
which an expert instructor brings to bear during training--includes the skills
and procedures required to perform the task ccrrectly, the types of errors
trainees can exhibit during learning, techniques for diagnosing trainee
performance deficits, and instructional interventions to correct skill
deficits and train appropriate behavior.

Development efforts aimed at constructing such knowledge-intensive
"expert” systems often adopt the "knowledge engineering” paradigm. Knowledge
engineering is an iterative process with six principal phases. These phases
include definition of the system's capabilities, extraction of domain
knowledge, formalization of the knowledge, design of the expert system,
ijmplementation of the system, and test of system performance. The process is
distinguished by the necessity of repeated and extensive interactions between
a domain expert and a highly trained system developer who elicits and encodes
the expert's knowledge about task performance and training procedures.

The shortage of experienced knowledge engineers and the difficulty of co-

locating knowledge engineers and domain experts for extended periods of time
limit the opportunities for the development of new expert training systems.
Therefore, a need exists to develop automated tools for knowledge acquisition
and formalization that could interact directly with domain experts and reduce
the involvement of knowledge engineers. Such tools could facilitate the more
rapid and widespread development of advanced training systems with automated
instructional features. These systems, fn turn, would contribute to Navy
training effectiveness by increasing the availability of high-quality
instruction through the use of computer-based training aids.

The generality of current tools for automated knowledge acquisition is
limited both by the present state of the art in knowledge engineering and by
dependencies among stages in the process that make it difficult to isolate
individual functions. The process of acquiring domain-specific expert
knowledge is dependent on the formalisms used to represent that knowledge,
which, in turn, depend on how the knowledge will be used. The technology for
engineering knowledge-based systems has not yet progressed to a stage in which

RL -
\\\

' .3
g 3
H P
’ .

NAVTRAEQUIPCEN 82-C-0151-1

relationships among domain characteristics, system objectives, and knowledge
representation requirements are well understood. This lack of understanding
limits the generality of system architectures and of any potential aids for
the system building process. To a large extent, the power of such aids
already developed has been inversely related to their generality.

The design of automated aids is also complicated by the opportunistic,
unpredictable nature of the system development process. The opportunistic
nature of the process derives from the myltiple dependencies among the varijous
stages in system development. The system builder has a number of
interdependent objectives in addition to domain knowledge acquisition, and he
must pursue them iteratively and incrementally--that is, in parallel--since
there is inadequate design knowledge for achieving them sequentially. It is
difficult to design an automated aid to be used under such variable,
unpredictable cfrcumstances. These characteristics of the knowledge
engineering process limit the scope and generality of a knowledge acquisition
system that can be produced given the current state of the art.

Within these constraints, project research considered a number of
alternative concepts for aids to assist the development of knowledge-based
instructional systems. These concepts were evaluated against a number of
criteria that considered their feasibility, utility, and approprfateness for
use in military applications. The most promising concept entailed the
development of systems for the acquisition of knowledge in a variety of
domains with a single conceptual class. The notion of a class is somewhat
intuitive, but it may be defined more technically as a set of domains that
share a significant number of concept abstractions among their bodies of
knowliedge and that could be taught by a single training system with a fixed
set of instructional features. Such classes within the Navy inciude sonar and
radar system operations, system maintenance, and platform-level combat
tactics.

The development of an automated knowledge acquisition aid generic to a
class of domains requires the prior development of an adequate training systen
for one domain in the class. Subsequently, the automated aid is developed and
used to implement the “"same" training system for other domains in the class.
The automated aid depends on the particular implementation of the training
system and on knowledge it embodies, abstracted from the first development
effort, about how to elicit and organize domain knowledge for the domain
class. This approach avoids the problem of interfacing an aid to an iterative
and variable set of activities by completing all the activities, except the
acquisition and encoding of specific domain knowledge, in the course of
building the system for the first domain. The finished results of those
activities are transported intact to the systems for the other domains. The
approach follows from and builds upon the techniques used in the "skeletal
systems” developed to assist fmplementation of expert consultation systems for
specific classes of problems.

This report describes three alternatives for implementation of a class-
generic knowledge acquisition system for use in developing advanced training
systems. The first would implement an architecture and knowledge acquisition
aid for eliciting from an expert the knowledge needed to perform automated
performance diagnosis of a trainee during learning. The automated aid would
acquire an instructor's knowledge of potential errors in task performance and

NAVTRAEQUIPCEN 82-C-0151-1

other performance deviations needed to support automated performance diagnosis
during training sessions.

The second alternative knowledge acquisition aid would capitalize on
ongoing efforts to develop "intelligent" automated opponents in tactics
training systems. 1In this case, the aid elicits elaborations of alternative
{possibly sub-optimal) opponent tactics and knowledge of when during training
to invoke these alternative behaviors to achieve pedagogical objectives.

The third alternative extends a prior Navy research and development
effort that implemented a prototype generic instructional system. That system
uses instructional "games" to assist trainees in the memorizatior of domain
facts and relations. It has already been applied to several different
domains. However, building new domain knowledge bases for the system remains
a costly and lengthy manual process. This alternative would aim therefore at
implementing a more cost-effective automated approach to building knowledge
bases for this existing prototype system.

These three alternatives for pursuing the concept of a class-generic
automated knowledge acquisition aid represent a range of tradeoffs among
issues involving cost, payoff, and feasibility. The tradeoffs cannot be
resolved on purely technical grounds in favor of any one of the alternatives.
Instead, Navy priorities will need to be considered in selecting an
alternative for further development.

Analysis of the knowledge engineering process and human factors
considerations led to a set of guidelines for the development of user
interfaces to these systems. These guidelines emphasize system
characteristics required to insure the utility of the knowledge acquisition
aid to Navy domain experts.

Discussions of user interface design {ssues for the class-generic
knowledge acquisition aid were held with several Navy domain experts and
training system developers. These discussions provide some guidance for the
pursuit of any of the alternatives. The most significant and consistent
opinion expressed indicated that the medium of human-machine interaction--
frequently the focus of so-called "user-friendly" interface design--is not
1ikely to be the crucial factor in determining the utility of a knowledge
acquisition system to Navy domain experts. Rather, discussants emphasized the
need for conceptual support for the knowledge specification task in the user
interface and the importance of selecting potential users with some computer
skills and high motivation to use the system. They perceived high motivation
to contribute to a system development effort as the sine qua non for effective
automated knowledge acquisition: the best user interface would not be
sufficient to support use by domain experts arbitrarily assigned to work with
a system devcelopment team. Given high motivation and some computer skills
{which are increasingly widespread among Navy personnel), conceptual support
from the user interface becomes the most critical design issue.

An interface to a knowledge acquisition system should provide several
types of conceptual support. These in¢clude (1) adaptive control of dialogue
fnitiative, (2) user access to information about prior and potential future
contexts for his activities with the system, and (3) feedback about how
knowledge supplied by the user affects the behavior of the training system.

L vir Far -
e v

NAVTRAEQUIPCEN 82-C-0151-1

The architecture of the knowledge acquisition system and its interface should
therefore include intelligent dialogue planning and interaction management
functions. Further, it should provide a flexible interface to the target
training system for experimentation with the incrementally developed knowledge
base supplied by the user. Detailed design decisions regarding interaction
media and protocols can only be resolved when the characteristics of the
domain class and features of the training system’s own architecture have been
identified.

Two activities therefore emerge as critical steps toward the development
and implementation of any of the three alternative knowledge acquisition
concepts. First, research must focus on the problem of characterizing and
representing class-generic knowledge necessary to capture training expertise
in a variety of domains. Second, techniques must be devised to use this
knowledge in an appropriate system architecture providing conceptual support
for the user during knowledge acquisition sessions. Further design of low-
level interface details can be deferred at least until a prototype system
accessible to motivated, skilled users has been developed.

Py v o ——

NAVTRAEQUIPCEN 82-C-0151-1

PREFACE

The application of knowledge-based modeling techniques to training
simulators appears likely because of increasing pressures to make these
devices more “intelligent." There is an emerging requirement to decrease the
instructor/student ratio for simulator-based training. This requirement is
dictated by logistical considerations. In order to counter this potential
threat to training effectiveness, intelligent training devices implemented
through knowledge-based models could be developed to augment the instructor
cadre. Instructor functions would be provided in the form of software models.
This will allow the instructor/student ratio to be reduced without reducing
the amount or quality of instructional guidance.

The Human Factors Laboratory at the Naval Training Equipment Center has
been pursuing research related to the development of intelligent training
devices for over a decade through research programs in adaptive training,
student performance measurement, and part-task training. It is becoming
apparent that such functions can most effectively be implemented using
concepts borrowed from the artificial intelligence research community.
Attention is being focused on knowledge-based models, in particular, expert
systems,

The current development cycle of an expert system is very lengthy and
consumes a great deal of resources. Making the implementation process more
etfticient would support the application of these knowledge-based models to
simulator-based training. In particular, the knowledge engineering process
has to be streamlined. The present task was initiated to investigate the
possibilities for reducing resource expenditures during the process of
knowledge engineering., The stated goals were to determine the extent to which
the process could be automated and to make recommendations concerning the
conditions under which such automation would be practical. Clearly, knowledge
engineering is a complex cognitive activity and a general, completely
automated procedure cannot be supported by the current state of technology.
However, it appears that a workable system can be developed to automate
certain phases of the knowledge engineering cycle for particular classes of
expert models. This report details the procedures followed in reaching this

| s

Robert Ahlers
Scientific Officer

5/6

NAVTRAEQUIPCEN 82-C-0151-1
ACKNOWLEDGEMENT

We are grateful to the personnel of the Fleet Combat Training Center,
Pacific and the Navy Personnel R&D Center for their participation in the
discussions summarized in Section V. We also wish to acknowledge the role of
the colleagues who provided informal feedback on our analysis of the knowledge
engineering task and concept for introducing automated aids for it.

NAVTRAEQUIPCEN 82-C-0151-1

TABLE OF CONTENTS

Section

I INTRODUCTION

Background

Approach

D e X

I1 THE KNOWLEDGE ENGINEERING TASK 16

What is knowledge engineering?

The practice of knowledge engineering

A Cognitive Task Model of Knowledge Enginee. .ng

CURRENT TECHNOLOGIES FOR ASSISTING KNOWLEDGE ENGINEERING

Application-specific assistance for ITE

KOL

TEIRESIAS .
KAS 37 ;
The ONCOCIN knowledge base verifier a0 :
SECS 40 {

support in application-independent knowledge-engineering tools

EMYCIN

ROGET 4?2
EXPERT 43
AGE 44

GODDESS a4
ROSIE 5

ronclusions

INSTRUCTIONAL KNOWLEDGE ACQUISITION SYSTEM CONCEPT

Criteria for evaluating IKAS concepts
Evidence supporting feasibility

Ease of implementation 48
. Reduction of DF time-on-task 48
Reduction of KE time-on-task 48
Evidence for user requirement 49
Increased functionality 49
Generality and scope of application 49
DE background and skill requirements a9

User training required

Alternatives for IKAS Concept Development

NAVTRAFNU I EN 82-C-0151-1

Alternative 1: An aid for the specification of performance
models

Alternative 2: Modification of an Opponent Simulation for
Tactical Training

Alternative 3: Construction of Knowledge Bases for Instruction
on Domain Facts

vV INTERFACE DESIGN CONSTRAINTS FOR THE IKAS

Jser Intertace Issues and Methods
Media
Responsiveness
Flexibility
Context
Jser Control
User knowledge requirements
Discussion

Inputs from system builders and potential users
Method
Interview results: system builders
Interview results: DOMAIN EXPERTS

Niscussion and Recommendations
Niscussion of interview results
Recomnendations for IKAS design

Y1 THE IKAS ARCHITECTURE

[KAS Modules
FLICITOR
FDITOR
EXERCISER
RECORDER
PLANNER
CHECKER
MANAGER
JSER ASSISTANT
HELP FACILITY
CAI FACILITY

System Features
Mixed Initiative
Dynamic Control of Initiative
Conceptual Support for the User
Modularity
Consistency
P lexibility
Turn-key Accesaibility and Usec

VIT CONCLUSIONS

REFERENCES

k!
80

80
30
84
114
RIN
st
87
87
RIS
38
38

31
89
89
B9
89
qn
ap
g

NAVTRAEQUIPCEN 82-C-0151-1

sf
| Appendices Page
A ILLUSTRATIVE INSTRUCTIONAL KNOWLEDGE ACQUISITION DIALOGUE 97
|
!
|
&
3
k
11

Sl e
B5Y 8 o PR 0 S L NN s’ liia L o

NAVTRAEQUIPCEN 82-C-0151-1

LIST OF ILLUSTRATIONS

Figure Page
1 Control Flow of Knowledge Engineering Task Model 20
2 1KAS Architecture 81

e

e s w----u-------ll-lllll.llllllllllll!ll_llll!Illl.ll.llllllllIlllIllIll!lll-!llll-ulll---u--ng------------

NAVTRAEQUIPCEN 82-C-~0151-1

SECTION I
INTRODUCTION

BACKGROUND

Much training in the Navy and other military services requires closely
supervised, intensive, and highly technical instruction on a complex task. In
many cases, such instruction is provided by a training specialist in
conjunction with a training simulator. Simulators are typically designed to
develop and extend knowledge and skills that are impractical, expensive, or
impossible to exercise within operational environments. Typically, such
simulators provide practice on the target task but littlie or no instructional
feedback on trainee performance, skill deficiencies, or coaching on correct
behavior. Human instructors must therefore observe trainee performance and
provide appropriate instructional interventions. However, in many cases,
skilled Navy instructors are in short supply relative to the number of
trainees, and the quality of instruction can vary from individual to
individual. '

Recent work on "intelligent" simulators is leading to the development of
simulators with instructional capabilities in addition to simulation of
operational equipment and situations. These training simulators will embody
"surrogate instructors”, which, in conjunction with human instructors, could
better provide trainee performance evaluation and adaptive training. Such
augmented training capabilities can significantly increase the cost-
effectiveness of simulator-based training and extend the availability of
individualized instruction.

Research on surrogate instructor technology (also called Intelligent !
Computer-Assisted Instruction [ICAI]) has utilized artificial intelligence
techniques toc represent conceptual knowledge about the problem domain, expert
and trainee performance, and instructional methods. Many of these techniques
are derived from those used in so-called "expert systems“--knowledge~
intensive, high-performance programs designed to serve as automated
consultants to domain experts. A recognized bottleneck in the development of
expert systems and hence surrogate instructor systems is the human resources,
time, and cost required to articulate the expert domain knowledge and to
encode it in software. Current approaches involve frequent, long-term
interactions among a team of highly-trained knowledge engineers and domain
experts. While some technology has been developed to assist knowledge
engineers in developing expert consultation systems, it has not reduced
requirements for person-to-person interactions that account for much of the
development time and cost. The application of technology assistance to
developing surrogate instructor systems has lagged behind expert systems
development, and 1ittle work has addressed the reguirements for surrogate
instructional systems insofar as they differ from expert consultation systems.
Therefore, a need exists to identify technological opportunities to facilitate
and streamiine the task of articulating expert knowledge to be used in the
development of an automated instructional system.

13 :

P p Tegmd m1’i§-¢q-_ﬂ‘- e 'j

NAVTRAEQUIPCEN 82-C-0151-1

APPROACH

The current project sought to define a set of feasible, high-payoff,
research objectives for the automation of the knowledge elicitation process.
As a first step, a review was made of the available documentation of previous
and current expert and instructional system building efforts. Particular
attention was given to those projects attempting to develop tools to aid the
system building process and to provide generic system capabilities.
Conversations with other knowledge engineers provided insights into the
difficulties and pitfalls of designing expert systems. In addition, these
individuals provided useful comments on the design concepts developed to meet
NAVTRAEQUIPCEN requirements. Finally, interviews with domain experts and
training specialists in the Navy elucidated system design constraints dictated
by characteristics of target users and the operational environment.

Farly on in the review and analysis effort, it became apparent that the
present state-of-the-art in the field of expert systems can not support a
detailed generic design for surrogate instructor systems. Variations across
domains and desired system capabilities require different representations for
knowledge and different mechanisms for applying it. As of now, no single,
uniform representation of concepts, relations, procedures, and strategies has
been found sufficient to capture domain expertise in a wide variety of
domains.

In addition, it became clear that the software modules in a surrogate
instructor system that use the domain knowledge can not be independent of the
~2presentdations or their use. This depéendence also extends to software that
would aid the development of surrogate instructor systems. In particular,
details of an effective user-interface design for acquiring domain knowledge
from an expert depend on the knowledge representation. Generic human
engineering principles for interface design are only rough guidelines to
system development, and their application requires more detailed
interpretation with respect to the target system's specific features and
implementation. Thus, we concluded that an intelligent, generic system
intended to support the development of any surrogate instructor system was not
feasible given the current technology and state of knowledge in expert
systems.

4o therefore worked to determinc a more restricted concept of generality
tor an automated knowledge acquisition system. Using this concept, we
attempted to elucidate (1) a design for a knowledge acquisition system
specified to the extent possible without committing to a particular surrogate
instructor system architecture, (2) a set of alternative interface concepts
consistent with the design for which additional work could be realistically
undertaken to produce a useful system, and (3) a set of issues that must be
resolved in such additional work.

The concept we developed addresses generality for an automated knowledge
acquisition system at the level of a class of tasks, each member of which can
ne adequately served by a fixed set of surrogate instructor capabilities and
knowledge representation formalisms. The notion of such classes is largely
intuitive: a characteristic of members within a class is congruence of high-
level semantic and pragmatic aspects of domain knowledge, which we will refer
to as class-generic knowledge. However, regardless of its intuitive nature,

14

.
o han ol e

E
3
5 i_t_l*ﬁgﬁﬁi"ﬁﬁ:?ﬁm{hmd;;‘:A,,,.,,A,LJ

NAVTRAEQUIPCEN 82-C-0151-1

in our work we have found that consensus exists for the definition of some
such classes of tasks.

This report presents the results of our research to specify and elaborate
a design for an instructional knowledge acquisition system. Section
II presents a model of the knowledge engineering process and describes the
activities required to build an intelligent instructional system. This
section indicates how particular features of that process preclude the full
generality NAVTRAEQUIPCEN sought in its original concept. Section IIl reviews
selected research on tools to assist expert system building. This review
illustrates more concretely the factors that limit generality. Section
1V presents our general system concept, and a set of criteria to be considered
in evaluating alternative realizations of the concept. Three alternative
specific concepts are then presented that differ with respect to these
criteria and to the specific instructional capabilities of the systems they
serve. Section V introduces a set of user interface design issues and
describes interviews conducted with system builders and domain experts to
determine how those design issues might be resolved in realizing our system
concept. Section VI presents an architecture for implementing those functions
and interface features of the system concept that can be specified without
further commitment to the class of tasks and the host system's capabilities.
Finally, Section VII reviews the conclusions and recommendations derived from
the research.

15

oy

e oo e s i o . £ N S Sl N M S ettt ottt bt et s

NAVTRAEQUIPCEN 82-C-0151-1

|
i
g SECTION 11
THE KNOWLEDGE ENGINEERING TASK

Planning effective automation for aspects of any complex task requires an
analysis of the task and development of a process model of the task. This
model is required both for determining what task components to automate and
how that automated system should interface to the people who will use it.

: This section presents an analysis of the knowledge engineering task and a
i model that describes the relationships among task objectives, the activities
that attain them, and the knowledge required by those activities.

WHAT IS KNOWLEDGE ENGINEERING? .

Knowledge engineering is the process by which a class of computer
programs called expert systems are created. These systems are built to aid or
perform tasks thaf are very knowledge intensive, typically require inexact and
imprecise reasoning, and for which the expertise for performing the task
resides primarily with a very few human "experts." These tasks involve some
form of situation interpretation, decisionmaking, and/or planning. The best-
known examples of recent expert systems include programs for medical diagnosis
(Shortliffe, 1976), chemical analysis (Lindsay, et al., 1980), geological
analysis (Duda, et al., 1978), and planning computer system configurations
(McDermott, 19807. Knowledge engineering differs from conventional software
engireering in (1) the nature and extent of the interaction between the
knowledge engineer(s) (KE) and the domain expert(s) (DE), and (2) the types of
software design and implementation tools used.

post-implementation testing than is typical in other software engineering

efforts., Because axpert systems are knowledge intensive, knowledge

elicitation is one of the KE's major technical objectives. It alone generates

a need for frequent and prolonged interaction between the KE and DE prior to :
and during implementation. ?

The KE is more dependent on the DE both prior to implementation and for ‘

¥nowledge acquisition has proved to be a complex and difficult process.
The knowledge that must be incorporated into an expert system is largely non-
numerical and imprecise. It is usually expressed as an extensive body of
concepts, rules, and approximate methods. The term heuristic is used to k
describe both this type of expert knowledge and the type of programming a KE
uses to operationalize it. The expert's heuristic knowledge is often tacit
and thus difficult both to elicit and articulate. Determining whether the
evolving knowledge hase is consistent and when it is complete enough is
therefore a major problem for the KE and DE. This fact and the imprecision of . i
heuristic knowledge increase the KE's dependence on the DE for debugging, 1
evaluating, and tuning performance of an expert system. Thus, knowledge
acquisition typically continues well into the implementation stage.

The data types and control structures of conventional programming
formalisms are not conceptually well-suited for describing heuristic knowledge
and for developing expert systems. They do not provide an organizational
: framework for knowledge acquisition and lack good facilities for debugging

16

NAVTRAEQUIPCEN 82-C-~0151-1

knowledge-intensive code. Research on expert systems has therefore evolved
representation languages, symbolic programming languages, and rule-based
problem-solving architectures to allow more intuitive and transparent
operationalization of heuristic knowledge on computers. In addition,
specialized system-buiiding tools have been developed (e.g., Davis [1977],
Reboh [1981]) to aid the KE in encoding knowledge into specific
representations and in testing and refining an implementation. (Section

111 reviews these design and implementation tools.) These tools are designed
to be used interactively; hence, they enable and support the incremental
system building and testing necessary in expert systems.

THE PRACTICE OF KNOWLEDGE ENGINEERING

As a research area, knowledge engineering--a sub-field of artificial
intelligence (AI)--1s about 15 years old. The total number of practitioners
is under 300 internationally, mostly located in universities. Only very
recently have serious applied and commercial development efforts outside
academic research centers been undertaken. The academic focus has been on the
individualistic, innovative, and high-risk features of research in an emerging
field rather than on systematically reducing to practice the process of
knowledge engineering. As a result, the construftion of expert systems is
still more of an art or craft than a discipline.

Knowledge engineering is a highly intellectual and individualistic
process, although it is not uncommon for several KEs to work together on a
project. KEs generally hold graduate degrees either in computer science or
cognitive psychology and are familiar with the concepts and methods of Al.
However, they receive little formal training on how to build expert systems.
Instead, they acquire the necessary skills, usually as graduate students, in a
loose apprenticeship system under the supervision of more experienced
practitioners. As in any apprenticeship program there is considerable
variability in supervision. Progress in learning knowledge engineering
through hands-on experience js impeded by a lack of precise criteria for
assessing a KE's performance. Furthermore, it is not obvious at what point
someane becomes a qualified knowledge engineer.

Without exception, documentation of existing knowledge engineering
efforts describes numerous false starts and revision cycles prior to achieving
a system of any practical value. This characteristic may reflect in part the
academic research setting of the efforts and its tendency to encourage
inventiveness and discovery of alternatives even after existing efforts have
demonstrated workable methods and tools. However, there are substantive
limitations on the process of building expert systems that are more important
for explaining its characteristics. First, there are problems in formulating
initial system specifications; existing experience is either too limited or

1Arguab1y, the same remark could be made about other software engineering as
well. However, this field is more mature and considerable effort during the
past decade has attempted to organize and standardize the production of
commercial software.

|
g
3
1

Coo THEE W FAGEN . b i v

NAVTRAEQUIPCEN 82-C-0151-1

has not been sufficiently analyzed to determine exactly what an effective
expert system for a task domain should do. Second, there are problems in
implementing system specifications; there is a similar lack of experience or
understanding regarding the relationship between a set of specifications and
appropriate methods and tools for achieving it. At least at this point in
time, the knowledge available to the KE from prior efforts for generating and
evaluating designs is heuristic--as heuristic as the domain knowledge he
himself must acquire and operationalize to build an expert system. This use
of heuristic knowledge by the KE accounts in part for the iterative nature of
the knowledge engineering process. It also suggests that analyzing and
modeling what the KE does, in order to consider how to automate aspects of
knowledge engineering, may itself be viewed as an exercise in knowledge
engineering. However, the scope of the knowledge engincering task is
considerably broader than that of any task for which an expert system has yet
been built. Modeling the knowledge engineering task is therefore important to
permit identification of smaller, relatively independent activities that might
be feasible candidates for automation.

A COGNITIVE TASK MODEL OF KNOWLEDGE ENGINEERING

The design of automated knowledge engineering functions first requires a *
cognitive task model specifying the task's activities and the relationships
among them. The naive approach to introducing automation suggests that where
implementation is technically feasible and cost-effective, the machine should
perform all activities in which its productivity exceeds that of the human.
This approach overlooks the need to consider the nature of the human-machine 1
interaction that must occur. When activities are divided, those that are
retained by the human may include some that depend on knowledge and
information generated by activities assigned to the machine. Likewise, the
machine may be dependent on knowledge generated from the human's activities.

A cognitive task model specifies how tasks depend on knowledge and information
generated or modified by other tasks. Thus, the model can be used to
determine what knowledge must pass the interface between human and machine and
the frequency with which that interface must be used. It can show that
aYthough some tasks can be performed better in isolation by the machine, the
cost-effectiveness or viability of the overall system requires that those
activities be retained by the human. Although human performance is remarkably
flexible, ill-considered human-machine architectures can overwhelm human
cognitive capacity and endurance or impair motivation for using the system.

A cognitive task model is therefore an important tool in determining both
what task components to automate and how to design the human-machine
interface. It enables an understanding of how the attainment of objectives is
shaped by requirements for knowledge, performance factors and external
constraints. This understanding permits a design for automation that can
enable a human-machine "team" to to attain the task objectjves more
effectively or efficiently than can a human working alone. The model of the

It might also lead to a conclusion for some tasks that automation would not
he feasible or cost-effective. . %

NAVTRAEQUIPCEN 82-C-0151-1

knowledge engineering task postulates activities performed by three
participants: the customer (the ultimate end user and perhaps the financial
sponsor of the knowledge engineering product), the knowledge engineer {the
designer and implementor of the system}), and the domain expert {the source of
domain-specific knowledge).

Figure 1 summarizes the knowledge engineering process as the interacting
objectives and activities of these participants. It presents the set of tasks
as a flow chart indicating the ordering of and dependencies among the varifous
activities involved in a knowledge engineering effort. Because we have
summarized the process in flow chart form, the objectives and tasks may appear
to have a "natural" linear order. However, this appearance is deceiving, for
it presupposes a mature design science for building expert systems. The
ability to design a system successfully (i.e., so that the first
implementation of the design performs acceptably) requires (1) a set of
general design principles, (2) knowledge required to apply the design
principles to the particular problem at hand, and (3) a method to determine
that the resulting design is complete and satisfactory. In the knowledge
engineering process, there is no comprehensive or generally accepted body of
1 knowledge for meeting any of these requirements. Therefore, achieving a
workable design most typically requires the interaction among component
1 processes of design, implementation, test, refinement, and redesign. No one
of these processes proceeds in isolation; rather, several are simultaneously
active and under consideration. Thus, a linear stage model has inherent
limitations as a description of this complex process.

e = e e .

aAn alternative to the linear model is a class of models that accommodates
the simultaneous operation of multiple cooperating processes. These models,
called blackboard models, have been used to model other complex Cognitive
processes such as planning (Hayes-Roth, 1980; Thorndyke, McArthur, and
Cammarata, 1981), decision making (Thorndyke, 1982), speech understanding
{(Erman, et al., 1980), reading (Rumelhart, 1976}, and sensor interpretation
{Nii, et al., 1982). We believe that an attempt to develop a detailed
computational model of the knowledge engineering task might profitably adopt
this modeling approach, since the non-deterministic order of activities is
easily accommodated by this framework. However, one limitation of blackboard
models is the difficulty of representing and illustrating succinctly the
individual activities required for task performance or the retationships among
them. In this respect, the linear model is superior in its ease of
illustration.

Since a clear explication of the knowledge engineering process is
fundamental to the subsequent understanding of recommended proposals for
automation of components of that process, we have chosen to illustrate the
knowledge engincering process as a linear model, as shown in Figure 1.
However, we recognize that the nominal sequential order implied by the fiqure
is not a strictly accurate characterization of the way in which knowledge
nrngineering proceeds. In recognition of the non-determinism in the order of
activities, we have used an unconvertional notation in the flow chart shown in
ligure 1. Several of the branches leading from decision boxes lead to
myltiple points. This notation indicates that any one of the indicated
activities can be undertaken next depending on conditions not represented in
the flow diagram.

——TTT——

TEOREIN T ¥ F T AT RCS- S AL PN

DEFINITION

KNOWLEDGE ACRAST ON

FORMAL 1ZATION, DESIGN
AND WPLEMENTATION

-t

NAVTRAEQUIPCEN 82-C-0151-1

KNOWLE DGE CUSTOMER (C) DOMATN
PNGINEER (KE) {APERT (DE)

U DESCRIBES TASK.
ri LLARNS ABOUT “OBLLM

e

ARE THie!
HARDWARL ©.iif TWARE
CONSTRAINT 2

AR AT . A
UM gl afvioe
CHOLT O T EMINY
Ep REMESTT FNN ABTOMATINN
—O—————
o /Db /O LEFINE SYSTEM
FAPABITITIES ¥iN A-y)% UONSIRAINTS

b DFTERMIN .
REOQUIRE D o0l
AUPREGENTAT DN
AND R ARI 7 T TR
+
|
|
|

TARGET SYCTE™
FEASIBIE WiTHIN
CONS TRAINTS?

TARIHT "ot Tim
OCHTRARL

APPOR TNt
Ok, TACLES NS0T
{NSIDERED?

NG
4 U

[¥f SELECTS REPRESENTATION 7

AND ARCHITECTURE

o= -

Prgure 1o Control flow of knowledge engineering task model

NAVTRAEQUIPCEN 82-C-0151-1

{Continved' i

¥ SELECTS HARDWARE
5 SOFTWARE TQOLS

¥

EF IMFLEMENTS A VERSION OF CYSTEM I

OB JECTIVES
FRASIBLE
FNOMLE DGE
COMPLETE?

FORMALIZATION, DESIGN
AND IMPLEMENTATION

Wil
REORGAN] ZATION
HELP?

IS ANDTHER
LANGUAGE -v ro TEM
BLTTIR?

W :
[“. DE [VALUATES 4YSTEM ;
' OK MULTIPLE CASES
i
? ‘
:’) v ny
[T
!
AR GGATL
Nt VML D
! @q——-—- — T MpL T
“ DR JNCURIE T
[VE/GE REVISE KNOWLEOGL BAS!]
TS CURRENT DESIGN
. : - COMPATIBLF
v . . .
! Figure 1 (cont.). Control flow of knowledge engineering task model

21

NAVTRAEQUIPCEN 82-C-0151-1

[o i

Strictly speaxing, the KE's primary objective is to create an operational
expert system that solves a problem for his customer. Six major technical
objectives must be attained to create an operational expert system:

a. Definition: Specification of the capabilities the system will
exhibit.

b. Knowledge Acquisition: Description of the knowledge--concepts,
facts, and problem solving methods--needed to achieve the specified
capabilities.

c. Formalization: Organization of the knowledge using formal

representation Tanguages.

d. Design: Determination of hardware and software architecture.

e. Implementation: Implementation of the encoded knowledge,
procedures, and user interface.

f. Testing: Evaluation and refinement of the system.
These six objectives are similar to those described elsewhere (see, for

exanple, Buchanan, et al. [1983] and Reboh [19811]). In examining how the six
objectives have been addressed in prior systems, it is important to note that
most previously developed expert systems are products of R&D environments. In
these efforts, creating a working system was often secondary to performing
successful science (e.g., the development of new knowledge representations,
nroblem-solving methods or system-building tools). This difference in the

' priinary motivation of R&D and of potential product-oriented applications is

’ important because it leads to different subobjectives for the six major

! technical objectives and entails different external constraints on the KE. .

; For example, in academic research the objective of Formalization may entail f

inverting a new representation. In an applications effort, on the other hand, ’

external constraints may strongly discourage the KE from inventiveness in

favor of selection from existing representation lanquages. In fact, as we

will explain later, he may even be constrained a priori to use a particular

representation language. Thus, in developing a task model based on prior case

studies, we took into account how academic research motivations affected

pursuit of the objective of building a working system. By so doing, we have

oriented the model toward use in designing expert systems in product-oriented

environments.

T oA e Yondotem e A Y T . TR A £ 2 AL} BN 9 M

The remainder of this section discusses the model in detail. We
structure our discussion around the KE's six technica) objectives listed
above. For each, we first present its immediate subobjectives and then
consider in detail

- the knowledge the KE brings to the task for attaining tiat objective

- its dependencies on both other technical objectives and external
constraints

ma sl

22

R

NAVTRAEQUIPCEN 82-C-0151-1

- the types of activities that achieve it

- the criteria by which the KE monitors progress on it.
A. Definition Objective
Subobjectives

Generate potential system capabilities
Identify customer and DE problems
Identify opportunities for technological enhancement
Identify user interface requirements and constraints

Select target capabilities
Identify cost-effective candidates
Identify technologically feasible candidates
Netermine cognitively feasible capabilities

The Definition objective entails determining the performance capabilities
of the expert system and how it will interact with users. A planning or
decisionmaking task, for example, might require information interpretation,
option gJeneration, option evaluation, and option selection activities. An
expert system might assist the user with any of these, depending on the
approach to cooperative man-machine problem-solving the customer desires. In
addition, cost-effectiveness, feasibility, and other constraints on the
expected use of the system will influence which particular capabilities are
selected.

The major subobjectives of capabilities definition are (a) generation of
candidate capabilities and (b) filtering those candidates to produce a target
set satisfying the various criteria. The system's desired capabilities are
initially motivated by problems in performing the task. Ordinarily, these are
inparent and have motivated the customer's initial decision to consider an
expert system. They may be documented in written materials but can be mo§t
clearly defined through interactions between the KE, the customer and Df.
Typically, the improvement sought in the expert system entails lowering the
cost, increasing the speed or reliability, and/or improving the accuracy of
task performaree relative to the current methods.

for the KL to comprchend the difficulties the customer and DE perceive in
their task--and to evaluate differences in the perceptions of the customer and
the DE --he needs some knowledge of the task and how it is performed. I1f the
KE is initially ignorant about the task domain, his initial interactions with
the customer and DE must provide an introduction to the domain. This
introduction explores the general objectives and methods of the task as it is
currently performed. The KE develops the foundations of a task model using

e distinguish the customer, or sponsor, of the effort from the DE for the
sake of generality. In particular cases, the customer and the DE may be the

sarme individual, or the DE may represent the interests of the customer to the
KF .

23

e e e ¢ T PR

- -

PREpye—gbg———

T N e et ey

NAVTRAEQUIPCEN 82-C-0151-1

his knowledge of modeling frameworks. As he adopts a qgeneral framework, he
can take some initiative in seeking additional information he needs. Much of
the domain knowledge the KE elicits in these initial interactions will not be
encoded in the ultimate systom. T

Once the I has a basic understanding of the task domain, he can quide
the exploration of the problems the customer and 3f perceive and characterize
their performance and cost attributes, Initiative by the KE is important at
this pnint to forus the interactions. Together, the KF, customer, and DL can
hen airrive ot .1 set of verforma e capabilities that would remedy the
tdentified problems.

The customey and D mast also provide informetion ahsut the intended
users of the syatem and the enviroament in which it will be u<ed. This
knawledge 1s needed by the KUote determine alternative user interface
capabilities for the system. The prior experience of the users with
interactive computing systems, their motivation and ability to use the system,
and their technical knowledge «f the domain--if it is different from the
DE's--are all considerations in designing the user interface. For instance,
interface capabilities that depend on typed input can be inappropriate if
users cannot be motivated to learn or use typing skills in their work
enviromment. This particular fact has been learned too late by designers of
some commercial softwiare systems oriented toward manggers.

Another type of constraint that may infiuence system capabilities and
interface design involves hardware or software requirements. The customer nav
have cost corsideraticens, existing equipment, or organizaticnal poiicies that
dictate the use of a particuiar system. If sc, the capabilities provided by
thic system may either restrict or present opportunities for the use of
certain interface wedia, scftware packages, ard nrogramming languages.

Once e has an understarating of the domgin and the constrairts on svsitem
developnent) the KU ocan generalc additiona’ candidate capubilities for the
wysten based oo technological opportunity. By recogniting that the tachk
shares features with others for which expert systems have been built, the b
May propose to include capabilities preseant in those systems. The decision to
include such canabilities may involve consideraticons not apparent to the
customer and the DF. tor exampie, the decision =zxy be based on the KE's
knowledge that the capahbility is an easy enhancement--one which may be
virtually "free" because the knowiedge it requires will already be used to
implement another capability. The KE's ability to realize technological
opportunity in generating capabilities is dependent on his knowledge of prior
oxpert svstews and his ability to draw analogies from features of those
svstems 0 the current task.

The second objective in capabilities definition i< filtering the
candidate capabifitiss to produce a target set. The primary selection
criteria are the Lost-benefit expectation for a capability, the tochnolojical
Feasihility of a capability, and the ~verall operationail coherence of tho

tarqet Let. Cost-benetit evaluation depends an {1) the resources the customer

imwilling to allocate for develoning and operating an expert system; (2} tho
Kitq abhility to entimote the development effort and computational resources a
capahility will require; and (3) the beliefs that the K&, the customer, aud
the 3F have about the value of enhancing existing task performance.

T ——

cia

NAVTRAEQUIPCEN 82-C-0151-1

Technological feasibility becomes a difficult issue when there are no
precedents for implementation of a capability or when there are initial
constraints. The KE must estimate the risk involved in pursuing development
of the capability and a joint decision must be made about whether the risk is
acceptable.

In addition to eviluating capabilities individually, the coherence of the
entire operational concept must be considered. A piecemeal system with
loosely-coupled component capabilities may be inefficient and difficult to
use. The set or capabilities must be evaluated with respect to overall
implementation and support requirements and to the task model the KE develops.
The model is used to consider how dependencies among candidate capabilities
should determine the composition of the target set. For example, suppose
among a set of candidates were included an automated deduction capability and
a hierarchical explanation capability. Suppose that for either cost-benefit
or feasibility reasons a decision was made to eliminate or at least
substantially change the deduction mechanism. If the purpose or expected
benefit of the explanation capability depends in some way on the deduction
capability, then it too must be eliminated or modified.

Interface capabilities must be considered again at this point as well.
The interfaces to different capabilities must be coherent with one another and
with user requirements. To the extent that the cost-effectiveness or
feasihility of specific technical capabilities are linked to these interface
capabilities, the technical capabilities may themselves need to be
reconsidered. For example, suppose there is an option generation capability
in which the user can supply constraints and an interface supporting quasi-
natural language. The KE may determine that the interface will be
inappropriate for expressing constraints. One or both capabilities may then
need to be revised or eliminated from the target set. In that case, other
capabilities that depend on them may need to be reconsidered as well. Thus,
while individual capabilities may be filtered for singular reasons, each
addition or deletion from the target set may entail ramifications for other
capabilities already included or excluded.

According to one source (Buchanan, et al., 1983), difficulties in
initially defining system capabilities are anong the major causes of the
inefficient process of iterative development and revision in knowiedge
angineering. A major contributor to these difficulties is the "knowledge gap"
hetween the KE, the customer, and the DE. This gap is inherent in the
knowledge entineering task, since a defining feature of an expert system is
its codification knowledge known only to a few speciaiists. Only some of the
DE's extensive task knowledge may be needed to implement system capabilities,
hut almost all of it is relevant to selecting which capabilities to implement.
The DE may have difficulty articulating this knowledge, since it is tacit and
id hoc. The KF is an expert in modeling and programming formalisms unfamiliar
even to those who use computers in more routine applications such as data
processing and data base management. The customer and the DE may themselves
have varying perspectives on the task and the reasons for seeking to apply
expert systems technology. The customer is typically a manager who may not
have current technical knowledge but who may have a perspective on the
organizational context surrounding the DE's task. Definition of capabilities
requires the exchange and integration of these different types of knowledge,
perspectives, and technical vocabularies.

NAVTRAEQUIPCEN 82-C-0151-1

The difficulty of rapidly bridging the knowledge gap is thus a
significant factor mitigating against a successful one-step effort to define
system objectives. However, even if a single person qualified as KE and as Dt
for a task, other factors would cause revisions of initially targeted
capabilities. These factors, to be elaborated in subsequent discussion of
other technical objectives, involve the incomplete and uncertain nature of
current expertise in knowledge engineering. During the phases of Knowledge
Acquisition, Design, Implementation, or Testing, initial estimates of cost or
feasibility may have to be modified, creating a need to modify the targeted
system capabilities. Since Knowledge Acquisition, Formalization, Design, and
Implementation depend on the targeted capabilities, changes in Definition will
then necessitate revision of efforts in these phases as well.

To summarize, Definition is the most crucial technical objective in
dotermining the course of a knowledge engineering effort. OQur conclusion is
that several factors preclude an initial viable definition of capabilities.
This limitation is one major reason that knowledge engineering is highly
variable and iterative in the way it pursues its objectives. The most salient
factor is the knowledge gap among the participants, which inhibits the
communication required to define the desired expert system. We see no purely
technical approach to reducing the knowledge gap more rapidly. Another
important factor is the heuristic nature of the KE's knowledge for system
design and implementation, which may be inherent or may simply reflect the
present immaturity of the emerging discipline of knowledge engineering.

B. Knowledge Acquisition Objective

Suobjectives

Identify knowledge categories required by targeted
system capabilities

£licit domain knowledge from DE

Informally structure knowledge

The Knowledge Acquisition objective refers to the accumulation of :the
specific knowledge required to support implementation of the targeted systen
capabilities. As discussed above, domain knowledge is also elicited in
pursiing other gbjectives of the knowledge engineering process. In a1l cases,
the activities involved in collecting domain knowledge may be nearly
identical: interviewing the DE, observing the DE, reading printed
descriptions, etc. However, depending on the technical objective that is the
vi's current focus, the form and sequence of questions and the organization of
answers, observations, and notes can differ. Roughly speaking, the KE is more
interested ir the “what" (the qoals) of the DE's performance when defining
system objectives and in the "how" (the methods) when pursuing Knowledge
Acquisition. The specific knowledge that needs to be acquired is determined
by what capabilities have been targeted. The KE's ability to characterize the
nature and scope of that knowledge and to develop a plan for acquiring it
efficiently depends on his knowledge of prior attempts to build similar
systems. At the present time, that knowledge can provide guidance but not
detailed procedures for the KE to follow {see, for example, Buchanan, et
al. "1983]). The prior case sttiies available to the KE are limited buth in
numb o and in the types of tasks considered. The formulation of a rough
mapping between task characteristics, expert system capabilities, and the

NAVTRAEQUIPCEN 82-C-0151-1

knowledge and techniques needed to achieve those capabilities is just now
becoming possible (see, Stefik et al. {1983], for one attempt to specify this
mapping). Therefore, even the best-informed KE cannot specify a priori the
guestions and observations that will provide the knowledge needed to implement
a capability, even one similar to that in another operational system.

The knowledge gap between the KE and DE that affects Definition also
affects Knowledge Acquisition., The KE initially does not have the domain-
specific semantic and %sggmatig knowledge needed to evaluate and organize the
DE's statements or to direct interactions into related or important areas of
knowledge. The DE doesn't understand the KE's techr’cal objectives and
methods and may have difficulty articulating his knowledge; thus, he is rarely
in a position to assume initiative. Therefore, to manage Knowledge
Acquisition interactions, the KE must depend on relatively domain-independent
syntactic knowledge, based on a general framework for viewing tasks of this
type {e.q., interpretation, diagnosis, etc.) and later based on the
representation language he selects.

General frameworks for expressing task descriptions provide a few
fundamental concepts to describe and relate goals, procedures, and data. They
provide a simple uniform syntax for structuring Knowledge Acquisition
interactions. The most typical method is top-down progressive expansion of
detail. Knowledge acquisition concerning goals involves characterizing their
dependencies: relative priorities, enabling relations, and constraining
relations. Such characterizations frequently include judgments of degree of
belief or certainty. Procedures are characterized in terms of their enabling
and triggering conditions, the more primitive actions they integrate, the
resources they require, and their effectiveness. Data are characterized by
their source, their application, and often judgments of reliability. In using
a general framework for describing knowledge the KE relies upon ad hoc natural
language, if-then rules, and diagrams for representation. o

Once the KE has selected the representation language(s) the system will
use (part of the Formalization objective), that language can be used to gquide
Knowledge Acquisition. Representation languages provide a more detailed
syntax and general semantics for describing goals, procedures, and data. They
allow the KE to pose more precise requests for knowledge than do general
frameworks. At the same time, selection of a representation is a commitment
that excludes some domain knowledge from the KE's consideration and usually
vhanges how the K purcues his several objectives. From that point, the
activities for acquiring knowledge and formalizing it are often tightly
coupled, ospecially when the KE can also implement the knowledge base
incrementally. FEven with this coupling however, knowledge acquisition does
not become a passive, mechanical process for the KE; active interpretation and
inteqration are still required (Buchanan, 1981).

Nne problem with syntactically-driven approaches to structuring knowledge
acquisition interactions is that they can confuse or irritate the DE because
transitions and emphasis may not cor.espond to his intuitions about the
structure of the domain knowledge. !Intil the KE becomes more familiar with
the domain and can use semantic and pragmatic knowledge to guide elicitation,
his options for overcoming the problems of syntactically-driven interactions
are limited.

——

NAVTRAEQUIPCEN 82-C-0151-1

One method of improving dialogue management involves varying the focus of
elicitation. At the least, the KE can employ some content-free heuristics to
modulate repetitive patterns of interaction, which can easily result from
strictly depth- or breadth-first, top-down exposition of task goals and
methods. Depending on the modularity of the system's intended capabilities,
the KE might also direct elicitation toward knowledge specific to each
capability in turn, perhaps in order of importance or of planned
implementation.

Alternatively. the KE can use syntactic methods in a bottom-up manner
that gives the DE more initiative in controlling transitions and emphasis.
The most prevalent method is to orient interactions around real or
hypothetic:l task situations or cases. Using case generation, even a
relatively inarticulate DE can usually share the initiative with the KL. Once
L the NE has described an "important” case and how it should be treated, the KE

can use syntactic methods to extend and elicit the knowledge necessary to
analvze that case. When appropriate, the KE can use structural features of a
representation to prompt for related cases. For example, the KE might ask,
"Is there a case in which the procedure you just described is omitted?", "Is
there a case in which those two goals have the opposite priority?”, or "Is
there a case in which those data have different implications?". This type of
prompting must be undertaken judiciously, since such questions may be
misdirected and anomalous from the DE's perspective. Until he acquires some
semantic and pragmatic knowliedge about the domain, the KE's best tactic is to
promote the DE's generation of interesting different cases. The KE can then
build his knowledge of the domain by inferring the dimensions along which the
I c¢hooses to elaborate and sequence cases.

There are at least three limitations of relying on interactions built
around cases. First, multiple cases may contain much redundant knowledge.
Fach subsequent case therefore provides less new information, while the time
required to discuss them may not decrease appreciably. It thus becomes less
efficient over time. Second, the interaction over a case may cover many mnore
considerations than required for the targeted capabilities. This is, of
course, a function of how narrow the target set is in relation to the full
task and of how much context is required to present a case meaningfully.
Third, the focus of the particular cases generated by the DE may not be
sansitive to any priorities or plans the KE has developed for working on
different capabilities.

These difficulties imply that the KE's dialogue management plan for
knowledqge acquisition can emphasize case-oriented elicitation early in the
process. As the knowledge hase grows and other methods for effectively
controlling focus become available, case discussions should be used less
frequently. Skilled KEs generally rely on & combination of elicitation
me thods including {1) dialogues structured by applying general task
description frameworks and formal representation languages and (2) bottom-up
casc-structured dialogues in which syntactic structures are used to derive and
execiate local plans for the interaction. However, the overall set of
activities cannot be planned firmly. Instead, chdnges in interaction mode arc
triggered hy the KE's perception of the effectiveness of the methods in use
for cucing the DE and the rate at which new knowledge is being elicited. At
present, there is no adequate model for how the KE makes these determinations.

TR oL AT (N DT ‘J

——. -

NAVTRAEQUIPCEN 82-C-0151-1

Another aspect of the Knowledge Acquisition process worthy of note
involves feedback opportunities for the KE and DE. When the process is
undertaken as a series of protracted interactions, the KE may accumulate a
body of knowledge and be uncertain as to its completeness, consistency, and
ability to support the targeted capabilities. He cannot provide the DE with
assurances about progress, yet such feedback is desirable for maintaining the
DE's motivation. Coupling Implementation with Knowledge Acquisition (and
Formalization) is a means for both the KE and DE to obtain feedback that may
alter their approach to Knowledge Acquisition. When systems are built in
development languages that facilitate the rapid coding and testing of
prototypes, the ability to quickly produce and review initial results
typically elicits enthusiasm and increased motivation from DEs. The
requirement for feedback in Knowledge Acquisition is thus another reason
knowledge engineering has typically been iterative and incremental.

To summarize, the pursuit of Knowledge Acquisition is closely related to
the pursuit of other objectives. Definition determines what knowledge needs
to be acquired. Formalization provides structure for managing knowledge
acquisition interactions and for monitoring completeness and consistency of
acquired knowledge. Implementation provides further feedback on completeness
and consistency and enables a more goal-oriented pursuit of knowledge.

f. Formalization Objective

Subobjectives

Select a knowledge representation language
Characterize structure of acquired knowledge
Contrast knowledge characteristics with language features
Translate informal knowledge descriptions into forma)
representation language

The Formalization objective encompasses the activities that create a
formal description of the knowledge acquired from the DE using a
representation language. Ideally, the KE abstracts certain features of the
acquired knowledge and selects {or designs) a congruent representation
language. However, there are no objective criteria for determining an
appropriate representation formalism for knowledge with given characteristics.
Formalization is ad hoc with respect both to the definition of knowledge
characteristics and what they imply for representation. FEach KE uses
guidelines based on his knowledge of previous knowledge engineering efforts
and of knowledge representation research in general.

While representations have considerable similarity in their expressive
power they have idfosyncratic strengths and weaknesses. The weaknesses
cometimes prove a representation unsuitable for easily expressing specific
knowledge or for supporting satisfactory implementation of a system
capahility. Since there is no general capability for automatically

29

NAVTRAEQUIPCEN 82-C-0151-1

translating knowledge expressed in one representation to another,4 choosing a
representation that later demonstrates weaknesses can create problems for a
knowledge engineering effort. Only very recently has there been any attempt
to propose general principles for matching knowledge characteristics to
representational capabilities (Buchanan, et al., 1983; Stefik, et al., 1983).

The principles that have been proposed for determining a representation
language are derived from successes and failures of prior efforts rather than
from theoretical analysis. Stefik et al. (1983) consider three broad aspects
of the acquired knowledge: the hypothesis space, the problem-solving process,
and the data. These correspond to the goals, procedures, and data of general
task description frameworks. The important dimensions of the hypothesis space
are its size and structure, where structure refers to dimensions, such as
temporal, logical, and semantic, upon which the space can be decomposed and
operated. The problem solving process is characterized with respect to its
homogeneity and its dominant method (e.g., backward-chaining, forward-
chaining). Data are characterized with respect to their certainty,
completeness, and stability.

The gquidelines presented by Stefik et al. (1983) are useful, but are only
a first approximation to an understanding of how to select or design
representations for an expert system. They are derived from only limited
experience with the potential set of problems to which knowledge-based systems
might be applied. Even within the range of problems that have been
considered, the guidelines are not unique or precise prescriptions and cannot
replace the knowledge a skilled KE uses to select a representation for use in
a new system.

The development of practical knowledge about the strengths and weaknesses
of different knowledge representations for different types of problems has
been impaired, probably more than any other applied knowledge, by the fact
that most efforts to develop expert systems have been dominated by the
concerns of academic research. The rewards have been greater there for
designing new representation languages and associated computational
environments than for intensively analyzing the applicability of existing
ones. Consequently, there has been a proliferation of representation
languages and systems, few of which have been applied seriously to more than
one or two problem domains or have been used outside the institution in which
they were developed.

There is also a practical aspect to the resuit of coupling expert systems
efforts to inventive research on knowledge representation. Few representation
languages have been implemented in transportable, production-quality
computational systems. Thus, unless he has the skill and resources to develop
his own implementation, a practicing KE's choice of languages is limited. If

4Trans1ating between representations is a problem similar to translating
between conventional algebraic programming languages. Despite great interest,
little proyress has occurred on the latter problem and there is little reason
to believe that the capability will be achieved first for the more complex Al
representation languages.

= v e——

NAVTRAEQUIPCEN 82-C-0151-1

he does not, then a priori constraints on the hardware and software
environment (e.g., as imposed by the customer) can further limit his options.
When the choice of representation systems is known to be limited, these
constraints are best evaluated during initial efforts on Definition. Doing so
can allow the KE to use knowledge of hardware or software limitations to
circumscribe the system's capabilities and the types of knowledge the system
will require.

Nnce a representation language has been selected or designed, the KE can
use it to cocify informally represented knowledge elicited from the DE. This
is not necessarily straightforward, since there may be alternative ways of
expressing the same knowledge within a representation. A common uncertainty
is the granularity with which knowledge 1s to be described; that is, what
knowledge will be considered primitive and what will be composite. The KE
must determine granularity such that the representation of knowledge is
transparent. Transparency means that the expression of the knowledge should
not be excessively decomposed or contorted from the DE's natural way of
expressing it. Transparency is important in facilitating debugging and
maintenance of a system and for making the system's behavior more
understandable to its users. In particular, it helps make explanation
capabilities in the system congruent with users' conceptions of an appropriate
level of abstraction for understanding problems in the task domain.

When the Kb has selected the representation language and has begun to
encode some knowledge into it, he can couple more closely the activities of
acquiring and encoding knowledge, bypassing intermediate infcrmal
descriptions. As described above, this provides mechanisms for dialogue
management using the syntax of the representation. The KE must stili,
however, interpret and integrate the knowledge elicited from the OF.

0. Design Objective

Subobjectives
Develop system software architecture
Select system hardware architecture

The Design Objective entails formulating the hardware and software
architecture of the system. The process of producing a design interacts with
and depends on activities in the Definition, Formalization, Implementation,
and Testing Phases. The resulting design also depends on compatibility, cost,
or equipment constraints imposed by the customer. Constraints on hardware and
software options may 1imit Design options and even affect the capabilities
that can be incorporated into the system. In the absence of strong customer
constraints, the KI can design a software and hardware architecture based on
the most effective match between target capabilities and hardware/software
tools and techniques tu realize the capabilities. If he cannot customize a
representation language, he will be 1imited to architectures that can be
realized in an existing production-quality language system. In either case,
the limited number of prior cases from which the KE can draw can create
uncertainty about the applicability of any particular design to the current
problem and the expected performance of the system when implemented. Prior to
implementation, the type and scope of knowledge obtained during Knowledge

31

WA §

NAVTRAEQUIPCEN 82-C-0151-1

{ Acquisition will suggest to the KE the applicability of the various standard

i software design options available (e.g., type of inference system, structure

: of the knowledge base, representation of problem-solving strategies,

i explanation facilities) and hardware options available (e.g., graphics display
‘ vs. character display, keyboard input vs. mouse input, dedicated processor vs.
time-shared system).

A major task in system design is the integration of the representation
Tanguage system that encodes the task expertise with satisfactory user
interface scftware and hardware to provide the system's interaction
capabilities. If the KE is constrained to use a particular software system,
then the representation is a given. Otherwise, he must use basic computer
science skills and Al knowledge to generate a design that will be both
adequate and efficient. While existing development systems from which the KE
may select his programming environment offer user interface facilities, most
are tailored to the needs of a researcher with Al programming skills rather
than a customer or DE. Hence, in developing a finished system for a
commercial or military application, the KE will most likely face a significant
design effort for the user interface features.

Most of the high-level quidelines and knowledge to be used in interface
design (e.g., partitioning of initiative} should have been garnered during
Definition through discussion among the participants. Lower-level design
considerations (e.qg., formats, dialogue management, heuristics, etc.) may be
specified during initial Definition, but more likely will emerge during
Knowledge Acquisition and Formalization. These phases will specify in detail
the type and format of knowledge to be acquired from the user or provided by
the system to the user, as well as the structure imposed on that knowledge.
This specification will enable the design of interaction protocols from which
detailed user interface features and characteristics can be developed.
However, interface design for knowledge-based systems {or computer systems in
jeneral) is not a mature disciptine; again, the knowledqge the KE can bring to
hear is incomplete and heuristic. In most cases, testing by the DE and
initial use by the intended user population are required to revise the desijn
and implementation of the interface--another reason for the reliance on
incremental system development. 1In the expert systems field it is typical to
defer Jow-level interface design and implementation until the implementation
of the fundamental problem-solving capabilities is relatively robust and ready
for use outside the development setting.

£. Implementation Objective

Subobjectives

Implement inferential capabilities and user interface
fncode domain knowledge
Netect and debug programming errors

Implementation entails coding the formalized knowledge acquired firum the
Y in the selected hardware-software environment and verifying that the system
runs without software errors. (Such testing is distinguished from that
undertaken during the Testing phase which assesses the system's effectiveness
in realizing the target capabilities.) The Implementation process provides
the KE with information that can require additiona) work and revision in the

32

g - '4-'-"‘“"-'-..-..-...-.-...Il-IIlIul-u.--..-.---‘-'-..'-_'-_-_-._"’—“.‘

NAVTRAEQUIPCEN 82-C-0151-1

i« e R~

Definition, Knowledge Acquisition, Formalization, and Design phases. This

' information bears upon decisions that prior to implementation were based on

‘ incompiete and uncertain knowledge generalized from prior system development
k efforts. The utility of such information is a major reason that
Implementation has been undertaken incrementally, concurrent with the pursuit
of other objectives, in many efforts to build knowledge-based systems. A
general principle for knowledge engineering urged upon would-be KE's
(Buchanan, et al., 1983) is the early implementation of an experimental
prototype. =~

The extent to which the KE must code the basic software environment, as
opposed to just the formalized domain knowledge, depends on the representation
language he has selected. User interface software must generally be developed
even if the KE can adopt an existing lanquage system, but its design and
implementation are usually deferred until the system's problem-solving
capabilities have been implemented and tested. Thus, at worst, if he is
implementing his own basic software environment, the KE must only implement
the representation language, the associated problem-solving mechanisms, and a
skeletal interface before starting to encode the formalized domain knowledge.
However, experience indicates that including specialized editors and dehugging
tools in the software envirponment greatly enhances the efficiency of
incremental implementation efforts.

0Of course, the KE's approach to implementation also depends upon the
availability of the DE. Ready access to the DE supports an incremental
approach, especially where an early selection of representation language can
be made. Limited access--intensive, infrequent meetings spaced over time--
reduces the opportunity for incremental implementation and thus, given the
current state-of-the-art in knowledge engineering, the effectiveness of the
system-building effort. Except in cases where the KE has been able to adopt a
complete existing architecture for a new problem domain, successful efforts
have included a OFE as a regular member of the system-buildina team for the
full duration of the project effort.

Incremental implementation and the concurrent pursuit of other objectives
is inevitable, even desirable, as long as the KE's knowledge is as
unsystematic, incomplete, and uncertain as it is at present. The incremental
approach provides the KE with rapid feedback that can provide early
indications of the advisability of revising system design decisions. The
partial working system also serves an organizational function in helping to
maintain and promote the motivation of the system building team.

F. Testing Objective

“ubobjectives

‘ Formulate diagnostic test cases

: Assess system performance on test cases
Collect data on user's interactions with the system
Determine system performance on other targeted capabilities
Provide information required for effective revisions

Once a meaningful subset of the formalized domain knowledge is
implemented, the KE can pursue Testing of its targeted problem-solving

NAVTRAEQUIPCEN 82-C-0151-1

capabilities. The typical method of testing is for the KE and DE to define
critical (i.e., topical, important, frequent, or difficult) problem situations
for which the DE can specify criterial performance. Normally, testing with
these cases is repeated at points during the growth of the knowledge base and
whenever the architecture or implementation of problem-solving capabilities is
otherwise modified, as a check for new conflicts and inconsistencies that may
have been introduced.

A second aspect of Testing involves evaluation of user interface
cdpabilities. While these can be tuned initially by the development team, use
by others from the intended user community is required. This testing has
typically been limited and informal in many prior efforts conducted in
research environments.

The results of Testing can bear upon decisions and knowledge accumulated
in pursuit of each of the other objectives of the system-building effort.
They may lead the KE to determine that:

a. Particular capabilities are inappropriate or intractable and
should be eliminated, perhaps to be replaced by others.

b. The domain knowledge is incomplete, inconsistent, or inaccurate.

c. The representation lanquage lacks the required expressive power
or transparency.

d. The hardware-software architecture lacks sufficient capacity to
~ur the system or speed to execute it at an acceptable rate.

~. The probicn-solving methods and strategies are inadequate--that
15, the systenm's behavior 15 not "expert.,"

Mrisatinfactory performance on criterial cases wight be a syaptom of any
of these problems. Initially, the Kb responds by iterating on Knowledge
Acquisition and Implementation, since these gare most accessible to revision.
“ventyally, however, if problems persist or if new problems continue to
cnerge . the KE need to consider modification of the Definition, Formalization,
e Jesign objectives. Such modifications may have more far-reaching
ramifications for the nature of the resulting system. When system developers
upt for new capabilities, representation languages, or architecture, the
domain kncwledge base usually requires fundamental changes that entail total
redesign and reimplementation of the initial prototype (Buchanan, et al.,
1083), o

This process of test and revision is yet another reason for the
desirability of incremental design, implementation, and test. By testing
performance a5 the system evolves, it may be possible to accelerate the puint
vhere reimplementation, if 1t is required, can accur prior to a large
investment of time and resources on the initial prototype development effort.

e ————

NAVTRAEQUIPCEN 82-C-0151-1

SECTION III
CURRENT TECHNOLOGIES FOR ASSISTING KNOWLEDGE ENGINEERING

The model of the knowledge engineering process presented in the previous
section provides a framework for consideration of alternative approaches to
automating portions of the KE's tasks. Any new proposals and designs for such
automated systems must consider previous and current attempts to provide
assistance to DEs and KEs during system development. This section selectively
reviews this body of research.

Two general approaches have been adopted to facilitate the knowledge
engineering process {(Barr and Feigenbaum, 1982). The first seeks to
facilitate the interactive transfer of expertise (ITE), those phases of the
knowlodge engineering effort during which the Kt elicits, formalizes, and
envodes the DE's relevant domain knowledge. Some systems following this
approach aim to assist the dialogue management, bookkceping, and translation
performed by the Kt. These systems "interview” the user to collect domain
knowledge. Other systems provide high-level programming languages specially
designed to capture and represent heuristic, rule-based expert knowledge. In
other cases, attempts have been made to develop knowledge base checking
facilities for evaluating the consistency and completeness of the encoded
knowledge. Finally, some work has been directed toward supporting the
definition of system capabilities and the formulation of a software design.
Development of such aids in many cases has evolved in the context of a larger
project to implement a particular expert system; hence, such projects have
often had a pragmatic, ad hoc nature.

The second approach to facilitating development of expert systems is
"automatic theory formation" or, simply, automated learning. That research
aims to develop systems that induce new knowledge from experience--for
example, hy analyzing the behavior of the DE on particular test cases. (The
Meta-Nendral System [Lindsay, et al., 1980] illustrates this second approach).
These systems would replace the ITE process as a method for developing
knowledge bases and would apply to problems in which ITE is not productive,
either because there is no consensus among DEs or because the DE cannot
articalate his knowledge. Work on automated theory formation has typically
heen more theoretical and to a large extent has been pursued independently
from practical applications of expert systems. Because its applied {as
aopposed to theoretical) focus matches the concerns of the present project, our
review considers only those efforts directed at ITE.

The developers of the first expert systems quickly faced the problems of
managing the growth of their system and of providing facilities for end users
to control and maintain them. KEs found that once a representation language
and system architecture had been selected, the task of eliciting and encoding
new knowlcdge was more systematic, albeit still difficult, using generic tools
provided within AI programming systems. They responded by developing
specializations of these tools--knowledge structure editors, break and trace
packages for debugging, file managers--geared to the representations and
capabilities of their expert system. In so doing, they endeavored to provide
the means for altering the expert system using the concepts in the application
domain instead of the programming primitives that implemented that

NAVTRAEQUIPCEN 82-C-0151-1

application.

Following the early research on ITE conducted in specific application
domains, a second generation of efforts has attempted to extend the initial
work and develop generic toals for constructing expert systems. Such tools
have taken the form of either skeletal systems or specialized programming
languages. The skeletal systems provide a fixed problem-solving architecture
{knowledge base representations and control mechanisms) and user-support
modules for building knowledge bases using the system. lUse of such skeletal
systems is Iimited to problem domains for which their capabilities are
congruent with the customer's needs and their representations adequate t)
capture the structyre and content of the domain knowledge. The specialized
programming lanquaqes provide data and control constructs better tailored to
*he knowledge structures used in expert systems than the constructs of general
~1 languages such as LISP. These langquaqes are more general than skeletal
systems, enabling more flexible selection of architectures and capabilities.
However, they require the user to design representations and an overal!
architecture and consequently to engage in greater implementation effort.

In general, skeletal systems aid the KL in achieving the objectives of
Knowledge Acquisition, Implementation, and Testing, while they eliminate
Design effort. Specialized programming languages support Implementation
directly and Design and Testing indirectly through the transparent high-level
constructs they provide to the KE.

A1l the efforts te aid ITE have been oriented toward either KEs or DEs
with cansideratle sophistication about the expert system they are helping to
develop or maintain. lse of ITL 2ids by DEs with no KE support has been
achinved only for relatively mature systems in which the user's role is to
update and extend an already extensive knowledge base, The use of skeletal
nystems for building a new knowledge base and the use of specialized
orogramuing languages remains limited to KEs. However, the availabilityv of
such Lystems and languages reduces the level of programming ability a KL necds
o impleient an expert system.

The following discussion of representative systems is divided into two
narts. The first describes systems in which support for 1TF was develonad for
a particular architecture and problem domain. “he second describes more
general efforts embodied in skeletal systems, specialized programming
Tanguages, and other general systems for implewenting task expertise.

APPLICATION-SPECTIFIC ASSISTANCE FOR ITE

TEIRESTIAS. TEIRCSIAS (Davis, 1977) was developed as a subsystem to support
the grewth and maintenance of the MYCIN system (Shortliffe, 1976) knowledge
hase. Its facilities include tools for modification and debugging of the
production rules MYC 1N uses to encode knowledge about the relationships
hetween clinical data, infectious dicoases, and drug therapies.

IFIRESTALY made of interaction is a mixed-initiative dialoque using a
mistare of quasi-Fnglish language and menu interactions with the user. The
dialoque model casts the user in the role of a teacher who is instructing the
system about new domain rules. The system assumes the role of a motivated

NAVTRAEQUIPCEN 82-C-0151-1

learner, raising questions of clarification about what it is told based on the
relationship of the new rules to old ones it knows. For example, it will
point out to the user that a new rule does not contain a predicate or action
clause that occurs in other rules referencing the same concepts.

TEIRESIAS' mechanisms depend on knowledge it has about concept categories
and rule structure. This knowledge allows it to parse quasi-English rule
descriptions into its internal representation. [t also permits TEIRESIAS to
raise questions about the semantics and pragmatics of proposed rule
modifications or additions. This application-specific meta-knowledge was
initially programmed into TEIRESIAS, but it has mechanisms for modifying the
knowledge. For example, knowledge of concepts frequently referenced together
is induced dynamically as the knowledge base changes.

To support debugging, TEIRESiAS interfaces to MYCIN's explanation
facilities and case library. When modifying or adding rules, the user can ask
for a dynamic trace of rule tests to determine why specific conclusions were
or weren't reached. This aids the user in revising existing rules when new
rules are added, so that undesirable interactions among rules can be corrected
as the knowledge base grows.

TEIRESIAS' approach is based on two fundamental assumptions. The first
assumption is that the host system's (i.e., MYCIN's) contrcl structure and
knowledge representations are understandable abstractions of the domain for
its users. TEIRESIAS' users were the same KEs and DEs who had built MYCIN
originally. They were therefore familiar with MYCIN's abstractions of the
problem domain and problem-solving process and could think in terms of them,
even if they were not completeiy intuitive. TEIRESIAS would not be accessible
to use by others without considerable training about how domain knowledge is
represented and used by MYCIN.

TEIRESTIAS® use of meta-knowledge about the host system's ifmplementation
reflects a second assumption: that MYCIN's cantrol structure and knowledge
representations were a sound approach and therefore stable. The architecture
and interface of the ITE functions are directly dependent on those of the host
system and would require revision if the lTatter were modified. MYCIN was in
fact a relatively mature system, with a significant existing knowledge base,
at the time TEIRESIAS was designed and implemented. The value of implementing
ITE support for a mature system depends on whether the knowledge in the
application domain is expected to change over time, on how complex the
"manual” process of modifying the knowledge base is, and on the skills of the
individuals who are available to implement modifications.

KAS. The Vnowledge Acquisition System (KAS) (Reboh, 1931) was designed as an
11 aid for the PROSPICTOR system (Duda, et al., 1978). iike TEIRESIAS, KAS
war designed and implemented only after its host system's architecture was
<table and a substantial knowledge base existed. Similarly, its architecture
and interface are dependent on the representations and control structures of
PROLPLLTIOR. However, it does not us. application dependent meta-knowledge
about the PROSPECTOR problem domain (i.e., interpretation of geological data).
Thus, KAS is transportable with the bare PROSPECTOR architecture (i.e., as a
skeletal system) to other applications.

NAVTRAEQUIPCEN B2-(;-0151-1

KAS takes advantage of PROSPECTOR's network knowledge representation for
quiding the acquisition of related rules. 1In particular, it supports the
joint efforts of a KE and DE to define a new inference model, which describes
the rules relating geological data to a specific type of ore deposit.
PRCSPECTOR uses networks to partition and structure its rulec into inference
models, and KAS uses the structural syntax of the network representation to
stimulate and monitor the elicitation of models. 1In addition to supporting
knowledge acquisition in this manner, KAS provides the KE with capabilities
tor debugging and evaluating the performance of models by tracing their
oxecution on stored cases and new ones provided by the DE.

KAS's basic approacnh to model building is initial top-down definition of
the abstractions in an inference model followes by iterative top-down
claboration of the arcs and nodes of the network created by the original
definition. These elaborations i1nc'ude the logical semantics of the arcs
1inking nodes, the rumeric values <f parameters to be tested against data and
to be used to assign confidence to inferences, and specifications for the
format of questions and answers PROSPECTOR should use when asking its user
about parameters.

The main subsystem of KAS used in model building is the REsident Network
Fditor {RENE), which incorporates knowledge about PROSPECTOR's
representational and computational formalisms. RENE provides an interactive
editor for networks, automatic bookkeeping for the model implementation
process, diatogue management during elicitation, and an interface for
controllied execution of inference networks.

The structure editor, Jike thase implemented for Al programming
lanquages, provides the user with primitives for manipuiating and altering
complex data structures--in this case, networks. Commands for changing the
editor's attention and for modifying knowledge reference arcs and nodes rather
*han the more primitive data types {e.g., strinas of characters, lists, atorms’
nsed in PROSPECTOR to implement these abstractions. The goal is hoth t4
wrevent syntactic errors that could occur 1f the user manipulated low-le.e’
representations directly and to allow the user to manipulate construct:
corresponding to those he uses to articulate his expertise during problen
.olving.

The bookkeeper is an "intelligent agent™ that "l1ooks over the shoulder o
the X" a5 he interacts with RENE's other facilities. It prevents syntactic
orrgra--tor example, by noticing that the KE hasn't connected parts of an
inference network. [t fi1ls in defaults for descriptive and quantitative
attributes of arce and nodes that the KE does not supply. [t alerts the KE to
~amifications of inputs for prior inputs. The bockkeeper uses a hierarchy of
knnwledge atout representations, about the host system, and, to the extent
that it has Leen supplied, about the domain. This knowledge is used by a
data-centered programming model that allows a set of actions to be associated
with each type of element of a representation. These actions (e.q.,
jenerating a default value) are executod whenever an element is added or
modi fied. In this way, RENE generates side-effects for actions initiated by
tho user that reflect the system's built-in knowledge of possible entailment«
of those acticns.

KAS primarily employs a question-and-answer dialoque protocol, generatin-

e im

-

MAVTRAFQUIPCEN 82-C-0151-1

its output from pre-stored templates. It uses menus and a quasi-fnglish
command Tanguage for uwer inputs. To inhibit user errors it uses the qrammar
of the command lanquage to prompt the user rather than attempting to parse
full statements. The grammar interfaces to PRCSPECTOR's taxonomic networks
(networks that represent the concepts used in the inference networks) to
extend the lexical richness of the command language as the knowledge base
Jrows.

Nuring model development, RENF's capabilities for controlled execution of
the evolving model witnin PRGSPECTOR allow immediate incremental testini and
refinement. Besides helping to prevent the propagation of dependent errors,
the independent debuqgging of parts of a model provides motivating feedhback to
the KE and NE.

Once the user has d-veloped an initial model, KAS can be used to install
and tune it within the existing PRUSPECTOR knowledye base. Tuning includes
the addition of mudnl-specific alaboratinons that modify defsults supplied by
RENE, force specific question segquences, and control the focus of attention
during a consuiteiion that accesses the model . At thic stage, KAS also offers
facilitios foor "bateh mode” testing of the complete nedel on cises supplied by
the expert, These facilities provide agutomotic variation of answers stored
fo0 the cases to allaw a sensitivity analysis. They alsce 21low the mixing of
stored answers with those acquired interactively so that the ¥Z and DE can
more easily explore a varticular issue in variety of contexts.

The asvelopers of KAy have drawn seversl gencral conclusions from their
affort. Tirst, regarding the knowledge that must be acquired, support for 1TH
should extend beyond the acguisition of domain problem-solving knowledge.
Tffective interfaces for knowledge-based systems 1ike PROSPECTOR require
domain-specific meta-knowledge to provide dialogue control if consultations
are to follow a course that is acceptable to its users. KAS is s major aid
for adding and testing such meta-knowledge for new inference models. Second,
use of an existing knowledge base has important bonefits fo- supporting the
acquisition of new knowledge. in particular, experience with KAS has shown
that expanding PROSPECTCR's network of taxonomies without regard to its actuind
use by existing inference wodels is an aid to acquiring new models. This
benefit derives from the use of the taxonomies ta dynamically expand the
vocabulary ot the Command language. The knowledge a system already containg
is also important for supporting the understanding of incompliete references by
the u~er. Without this capability, unless the system can somehow provide
snondh contedt for the gsor to keep track of the contents of the knowledge
hase, it is ditficalt for the user to interact with a know'edye acquisition
aid,

The final conclusion concerns the generality of knowledge acquisition
aids, tffective aids require knowledge about the representations used in
their host systems. The details of such representations depend on the problem
domain dand purpose encompassed by the host system. Thus, the generality of
specific aids can never be greater than the qenerality of their host systewm.
PROSPECTUR/KAS attempts to maximize thejr generality through a "layered”
architecture that localizes the modifications necded to adapt the system to
difforent domains and purpuses., Several attempts to adapt the architecture to
different classification and interpretation prehlems have confirmed that
minimal changes are requirved to support applications of PROSPECTOR/KAS tn

NAVTRAEQUIPCEN 82-C-0151-1

other members of the class of data interpretation problems.

THE ONCOCIN KNOWLEDGE BASE VERIFIER. ONCOCIN is an expert system that
provides its users with recommendations about cancer treatment therapies for
individual cases. Part of the ONCOCIN system (Suwa, Scott, and Shortliffe,
1982) is an ITE aid for the extension and revision of the ONCOCIN knowledge
pase. This aid checks the completeness and consistency of the knowledge base
whenever it is modified. Unlike the approach taken in TEIRESIAS and KAS, the
ONCOCIN knowledge base verifier allows testing for knowledge consistency and
completeness prior to the existence of or access to a functioning host system.

ONCOCIN rules determine a therapy protocol represented as a lis*t of
"action parameter values". Each rule includes a context and a set of
conditions for determining its applicability to a case. The verifier operates
by syntactically analyzing rules that recommend the same action in the same
context and generating a table whose row entries are all the possible
combinations of condition parameters found in the rules. The table indicates:

a. Missing rules: combinations of condition parameters not
associated with any therapy protocol.

b. Conflict: combinations of condition parameters that would
succeed in the same situation and are associated with different
protocols.

c. Redundancy and Subsumption: combinations of condition paraineters
that would succeed Tn the same situation and are associated with
identical protocols.

Cnly conflicts are true errors, but the other data serve as additional foci
for a review and revision of the knowledge base by the KL and DE. The table
display constitutes the entire user interface of the knowledge base verifier,
this limited interface restricts the verifier's utility to a KE who has a dee
understanding of its operation.

The verifier was initially developed and used to support the constructicn
of the original OMCOCIN knowledge base. 1Tt is specific to ONCOCIN's rule
representation, but independent of the domain semantics and system
architecture, The generality of the approach does seem limited by domain
characteristics, however. To avoid a combinatorial explosion in the size of
the table, the KE must partition rules by "context" into sets sharing a small
number of condition parameters. For the discovery of missing rules to be a
useful activity, most combinations of conditiorn parameters must be meaningful
in the problem domain.

SFCS. SECS (Wipke, et al., 1977) is an expert system that helps its users
solve organic chemistry synthesis problems. Its knowledge base is a body of
rules, called transforms, each of which relates a target substructure to its

precursors in a -~eaction. SECS includes an ITE support facility that allows
its O users to maintain and extend its knowledge bhase.

Modifications and additions to the SECS knowledge base are made usina the

NAVTRAEQUIPCEN 82-C-0151-1

ALCHEM language, a quasi-English command language with a rigid syntax. The
ALCHEM commands enable the description and manipulation of transforms in terms
of schema-like abstractions. Each “slot” of the schema has its own
specialized syntax which is recognized by ALCHEM. Although the ALCHEM syntax
is rigid, the ITE interface is flexible in that the user has full control over
how to proceed in defining a new transform schema.

SECS and ALCHEM represent an extreme approach for using domain and
system-dependent knowledge in implementing support for ITE. At the cost of
generality and of considerable commitment by its users to master new skills,
the result has been a mature system which is now completely maintained by its
user community.

KOL. The Knowledgeable Opponent Librarfan (KOL) {(Alperovitch, 1982) is an ITE
aid developed for use with a knowledge-based tactical gaming system. [t
supports the elicitation of tactical plans that can be executed by an
automated opponent in the host system.

KGOL's elicitation method is based on top-down refinement. The user,
either a ¥YE or trained DE, is prompted to describe a tactical plan at
progressively lower levels of abstraction. Each refinement expands an action
into a number of more specific actions. Ultimately, the refipement must reach
a level where the descriptions reference only a predefined set of domain-
specific primitive elements.

KOL allows the user to exercise initiative and return to previously
expanded nodes in the plan tree in order to enter modifications. It has
bookkeeping facilities for informing the user when such modifications have
ramifications for other nodes and for monitoring whether all branches of the
plan have been expanded to the level of domain primitives.

The XCL user interface uses stored text templates to gen:rate prompts.
[t has 4 structure editor for input that limits syntactic errurs. It makes
use of CRT display features to present context information during editing and
to display plans. These features are also used during elicitation to provide
timited cantext around the plan node being expanded. The interface does not
provide capabilities for using existing plans to build new ones. In addition.
because it can only interpret the design descriptions at the primitive level
of the plan tree {i.e., the leaves of the tree), it can provide no assistance
in evaluating the overall design.

KOL is essentially an aid for program design and automatic programming in
a partic lar domain--that of submarine tactics. [t forces the user to design
a plan (program) specification in a structured, top-down fashion. It then
uses an interpreter to translate the lowest level of the design, specified in
a predefined abstract languey., into Pascal code that can be executed by the
host system,

The KOL approach to supporting ITE, like most of the others described
thus far, is viable only after its host system is relatively mature. It
depends on the existence of a stable domain-dependent set of primitive
concepts and a language for referencing them. The KOL implementation is
relatively modular, allowing the elicitation and bookkeeping facilities to be

? NAVTRAEQUIPCEN 42-C~01%1-1

used with different domain-specific primitive plan lanquages.

KOL ‘s generality is limited to problem domains in which plans are

3 conceived as hierarchical and in which the actions at each level of the
hierarchy are sequential and independent. This approach to planning may be
i overly restrictive in certain situations and not weil matched to humans'

1 planning style. For exanple, for sone problems the plans may not be most
naturally represented as hiervarchical struitures. In cases in which the plans
are hierarchical, actions in the plan may include concurrent and asynchronous
actions. In addition, planners do rot always tev-lop their plans in strictly
top-down fashion. Rather, they may generate plan clements opportunistically
as decisions dand chofces at divferent levels of abstraction occur to them.
Therefore, an aid for [Tt should provide flexibhility and robustness in the
representation structure of the knowledge to be elicited and in the degree of
user control over what portion of the structure tc elaborate next. The need
tor such flexibility increcases as the intended generality and intended scope
of applicability of the aid for ITEL increases.

ITE SUPPORT TN APPLICATION-INDEPENDENT KNOWLIGE-ENGINEERING TOOLS

EMYCIN. EMYCIN {Essential MYCIN) (van Melle, 1979} is a skeletal systen
derived from the architecture of the MYCIN svstem. It has been applied to
classification and interpretation problems in several domains.

EMYCIN contains all the support facilities for ITE that TEIRESIAS
provided for MYCIN, except those that were directly dependent on domain
“nowledge programned into TEIRESIAS or available (¢ it from MYCIN. Thus,
FMYCIN does not support the same quasi-English rule specification nor the
checks for rule consistency that were features of TEIRESIAS's interaction with
the user. Instead, FMYCIN has a high-level structurs editor for modifying its
Lnowledqe base. Within the editor, rule specifications are entered in the
VISP programming lanquage. The editor provides some syntactic and lexical
crrar checking and correction as well as automatic bookkeeping for the
knowledge base. EMYCIN thus requires greater computer-related skills from i1,
users than did TEIRESIAS.

The facilities carried over from TEIRESIAS include:

a. Interactive tracing and debugging of the reasoning leading to
conclusions.

b. fn interface to the performance system's explanation facility to
nbtain summary explanations of reasoning.

c. Automatic testing and comparison of stored case data and results
against those produced by a modified knowledge hase.

In gencral, ITE support in EMYCIN is more passive than that in TE{KISIAS,
placing most of the responsibility for initiative in the user's hands.

ROGEY. ROGET (Bennett, 1983) is an ongoing, experimental effort to prov.de

NAVTRAEQUIPCEN 82-C-0151-1

extensive support for ITE in the EMYCIN system. ROGET is unusual in that it
is intended to consult with the user about how to design an expert system for
his domain. ROGET applies meta-knowledge about how automated consultants for
other problem domains have been implemented within the EMYCIN architecture.
This experience is encoded both as specific facts about the other
implementations and as generalized concepts and rules inferred from the
specific facts. ROGET thus embodies a characterization of the class of
problems to which EMYCIN is applicable.

ROGET anplies a set of dialogue management rules to control a question
and answer dialogue with its user. The dialogue guides the user through
several phases of description of the desired system. The initial questions
ask about the purpose of the system, the general features of the knowledge it
must embody, and the data it will operate on. Examples from EMYCIN and other
expert systems are used to illustrate the classifications the user can
specify. Using these data, ROGET generates a probabilistic conclusion about
whether EMYCIN is suited to the task and, if so, what time and resource
expenditures the user should expect. It is able to use a trace of its own
rules to explain its conclusions to the user.

In the next phase of the dialogue, ROGET guides the user in formulating ‘
the abstract conceptual structure of the task. Again, it uses its knowledge
of other systems to illustrate possible answers. A conceptual structure,
analogous to the inference models of PROSPECTOR/KAS, describes a generic model
of problem solving for a class of tasks {e.g., clinical classification).
ROGET uses the abstract conceptual structure it elicits to guide a dialogue
elaborating specific models for the user's domain. This corresponds to the
elicitation of taxonomic and inference networks in PROSPECTOR/KAS.

‘ The features of ROGET are only partially implemented and there are no
real data on the effectiveness of the system. Even so, ROGET is a significant
new step toward support of ITE. It is the first system to provide assistance
; in initial problem formulation (part of the Definition objective} that is
fully integrated with elaboration and refinement of the formulation. It does
! this using its knowledge about the host system and about the characteristics .
i of specific types of problem domains implemented in the host system. ROGET is ,
}
|

oriented toward use by a KE; however, once the initial characterization and
conceptual structure have been entered by the KE {based on interactions with a
NE), it should be possible for a trained DE to use the system to further
elaborate the structure with only intermittent assistance from the KE.

The approach taken in ROGET suggests that a system providing assistance
in edarly knowledge acquisition requires historical and pragmatic knowledge
about its own structure and about the class of problems that it can address.

FXPLRT. T[XPERT (Weiss and Kulikowski, 1979), like EMYCIN and PROSPECTOR/KAS,
is a skeletal system for building consultation systems that help solve
classification problems.

i EXPERT's support for ITE is limited to testing and debugging new

knowledge. Adding new knowledge is a programming-like activity that occurs
with no direct interface to the performance system. Instead the user must
employ a standard text editor to describe the knowledge in a rigid, special

43 3

ST TSP N R

!

NAVTRAEQUIPCEN 82-C-0151-1

purpose language. The text file is then submitted to a compiler which detects
syntax errors and generates an executable internal representation of the
knowledge base. This base then can be utilized by the EXPERT performance
system. Knowledge acquisition therefore requires users trained both on the
system's problem-solving abstractions and use of general-purpose computer
systems,

Testing and debugging facilities permit tracing the operation of rules on
a casc and comparing the results produced by different versions of a knowledge
base over 4 sct of cases. The emphasis is on design of inference models by
debugging and refinement, with initiative strongly vested with the user.
However, the need to use an external editor and operating system facilities to
manage knowiedge base maintenance assigns greater incidental bookkeeping
responsibilities to the user thar is common in similar skeletal systems.

AGE. AGE ("Attempt *to GEneralize") (Nii and Aiello, 1979) is a system for
designing and building expert systems. It bridges the gap between skeletal
systems Tike EMYCIN and specialized Al programming languages. AGE aids its
user in selecting and configuring control formalisms for the expert system the
user intends to build. Ultima*ely, the user must encode the domain knowledge
into the selected formalisms using the LISP programming language. However,
AGE provides a softwarc library comprising a rule interpreter, rule tracer,
and explanation modules as well as the representation formalisms. The user
has access to these through an inteiligent front-end that performs automatic
bookkeeping and provides active guidance during the design and implementation
of the user's system.

AGE conducts a dialogue generated from templates to elicit a design from
the user. The user predominantly communicates through menu choices, with text
input Timited to labels the user provides for components of the design.
Dialogue management is based on prestored control knowledge about sequences of
architectural decisions and implementation activities that realize the
alternative architectures. At decision points, AGE offers the user choiccs
and can provide advice based on its control knowledge. Using a command
language, the user can escape from guided design elicitation to work on the
design and implementation in any order he wishes. Subsequently, he can return
te guided design, since AGE maintains a record of progress within both the
quided and unquided modes.

Despite the user-friendly features of its front-end, AGE is strictly a
tool for the knowledgeable KE. In addition to LISP programming ability, the
user must learn to understand and use the technical terminology AGE uses to
reference the software models it includes. ITE support is limited to design
and implementation, with no facilities for assisting the KE in interacting
with the DE to acquire domain knowledge.

GODDESS. The GODRESS system (Pearl, Leal, and Saleh, 1982} is an integrated
knowledge acquisition and decision aiding system. The performance component
of GODDESS is5 not an expert system, but we include the system in our
discussion because it draws on Al research and emphasizes support for ITE.

GODDESS guides a naive computer user in the elaboration of considerations
underlying an impending decision. The approach depends completely on

a4

NAVTRAEQUIPCEN 82-C-0151-1

syntactic analysis of a formalized representation of the user's input
accompdanied by quantitative evaluations of preference and confidence judgments
associated with elements in the representation. GODDESS can recommend a
decision based on the user's input, but more importantly provides an
interactive capability for the user to perform a sensitivity analysis--to
determine the criticality of particular factors and values in determining the
recommended decision.

GODDESS uses a simple generic representation of causal models for the
user's input. This representation is an AND/OR graph of goals and actions
derived from that used in the STRIPS (Fikes and Nilsson, 1971) system.
Dialogue management is based on the structure of this representation. It
starts with the user's ultimate goal and proceeds backward iteratively to
elicit subgoals, alternative actions to achieve those subgoals, and
preconditions for performing those actions. As each action is elaborated the
user estimates its cost and its likelihood for causing its immediate goal to
be achieved. The order in which subgoals (preconditions) are pursued in the
dialogue is determined by GODDESS using user-supplied judgments of
criticality.

The user interface in GODDESS is rigid and permits no user initiative.
Since the system has no knowledge of any task domain and does not develop a
hierarchy of primitive concepts, it must treat all user descriptions of goals
and actions as unparsed character strings. This limits its ability to check
the consistency of that information. The developers consciously sacrificed
this capability for generality of applicability and availability to untrained
users with a wide range of decision problem types.

ROSIE. ROSIE (Rule-Oriented System for Implementing Expertise) (Fain, et al.,
1981) is a high-level programming language specially designed to support the
implementation of expert systems. It has a relatively flexible English-like
syntax and a variety of language constructs that support riule-based
programming. However, it does not include an integrated design for knowledge
representation and problem-solving control structures, such as the fixed
desiagn of EMYCIN or the alternative designs of AGE. Instead, the ROSIE user
must construct these manually at his own initiative using the lanquage's
constructs. These constructs are intended to support transparent
implementation of a variety of problem-solving architectures.

The ROSIF user interface includes the features Al lanquages such as LISP
typically offer: interactive editing, interactive debugging using traces and
brrak points, and automatic file management. However, these are oriented
toward the level of abstraction of language constructs, not that of the user's
design. Thus, ROSIE provides little direct support for ITE except insofar as
it allows the user to program using the same concepts and English-like
expression of rules as he uses to describe task expertise. ROSIE's appeal to
the user is thus not its support for ITE, but in the flexibility it affords
for implementing system capabilities not available in existing skeletal
systems and in the ease it affords for expressing knowledge and rules.

ki p e

i,

NAVTRAEQUIPCEN 82-C-0151-1

CONCLUSIONS

The majority of efforts that have implemented knowledge-based systems for
specific problem applications have included some attention to the support of
ITE. In most cases, the support has evolved from that typically available in
Al programming systems for interactive testing and debugging. The
specializations of these facilities for knowledge-based systems include
manipulation of more abstract representations of knowledge and control and of
configurations of test data that are meaningful for the application. Support
for the acg-isition of new knowledge has been added to assist incremental
extension and refinement of expert knowledge bases. TEIRESIAS and KAS have
explicitly addressed knowledge acquisition support by taking an active role in
the knowledge elicitation process. To do so, they use knowledge about the
architecture of their host system, about specific features of the domain
knowledge, and about characteristics of prior knowledge acquisition
interactions.

Skeletal systems and other generic tools for building knowledge-based
systems nhave included generalizations of the ITE support found in the
application-specific systews. The [TE support in gencric systems applies
across most of the knowierdge base development process. However, because it 1§
based on the syntactic structure of skeletal system's representation
formalism, active elicitation is more mechanical and less responsive.

To the present time, support for ITE has been oriented toward KEs and to
a lesser extent DEs knowledgecble about formalisms of the host system. Thus,
DE use has been limited to systems that are already stable and so are unlikely
to require fundamental changes of capabilities, design, and implementation to
accommodate extensions ot their knowledge base. GODDESS, the one system
described here that is oriented toward use by naive DEs, is not a true
krnowledge-based system in that it has no understanding of the knowledge the
user oncodes beyond its formal relational structure. For true knowledge-based
systems, direct use by DEs for ITE appears poszible only with special
training. The amount of training required seems to bec directly proport o-al
to the complexity and flexibility of the system's representation formalisms
and inversely proportional to the system's ability to apply domain-dependent
knowledge in managing ITE interactions.

NAVTRAEQUIPCEN 82-C-0151-1

SECTION 1V
INSTRUCTIONAL KNOWLEDGE ACQUISITION SYSTEM CONCEPT

In this section we present our concept of an automated knowledge 3
acquisition system for elicitation of information from a DE for use in an
instructional system. In deriving a concept for automating knowledge
acquisition and reducing dependence on KEs for training system development, we
considered the set of functions performed by the KE (as described in Section ;
I1). Our review of prior work on aids for ITE (described in Section I11II) : |
provided data on the current state of the art in systems for ITE, the
resources required to achieve various capabilities, and the feasibility of
automating or assisting different aspects of the knowledge engineering
process. Based on this analysis, we considered a variety of possible concepts
for tools to assist the DE in pre-filtering ideas for automated training
system applications, tools to assist the knowledge engineer in the system
development effort, and tools to assist the elicitation of knowledge from the
DE. The set of specific concepts we considered included:

a. An advisor to help the DE determine if a knowledge-based
instructional system is feasible for his application

b. A tool recommender to advise the DE what training approach is
tractable and what instructional technologies can be brought to bear on
his application.

c. A knowledge engineering language tailored for the construction
of surrogate instructor training systems.

d. A data base completeness checker to find redundancies,
inconsistencies, and knowledge gaps in a wide range of application areas.

e. A test case generator for producing and managing tests of
developed systems.

1 f. A system to elicit from the DE the basic declarative concepts in
the domain and the relationships among them.

g. A system to elicit from the DE an expert task performance model
for any domain (i.e., the goals and procedures used to perform the task
correctly).

h. A system to elicit an expert task performance model for tasks in
a particular domain class (e.g., tactics, radar operations) that would
use class-specific knowledge to intelligently structure interactions with
the user.

i. A system to 2licit the deviations in an expert task performance
model that would define the performance model (i.e., the model of the
i types of incorrect behaviors the trainee might choose in particular
' situations) used for skill diagnosis during training.

NAVTRAEQUIPCEN 82-C-0151-1

j. A system to elicit the rules used to diagnose trainee benavior
during instruction (e.g., IF situation AND behavior THEN infer
diagnosis).

k. A system to elicit training problems or situation descriptions
that can be used by a generator to produce training problems.

To evaluate the promise of these concepts in meeting the objectives
stated by NAV TRAFQUIPCEN, we developed a set of criteria for system utility
against which these concepts could be weighed. The following paragraphs
describe these criteria, and the subsequent discussion presents our concept of
an automated instructional knowledge dcguisition system (IKAS) that emerged
from these considerations.

CRITERTA FOR EVALUATING IKAS CONCEPTS

EVIDENCE SUPPORTING FEASIBILITY. Perhaps the most fundamental criterion for
evaluating the suitability of a concept is whether or not its implementation
appers to be feasible, given current technology. Judgments of the
feasibility of o concept depend on several types of evidence. Precedents from
prior rescarch indicate whether the knowledge and methods to perform the
function under consideration can be sufficiently well described to support an
implement:tien. Discussions with domain experts can indicate the extent of
their knowleage, their ability to articulate it, and their ability to engage
in particu’r types of human-machine dialogues ibout that knowledge. In
general, the feasibilitv of realizing a particular IKAS architecture varies
Airectly as e function of the scope and complexity of the concept.

EASE OF IMPLEMENTATION. A set of IKAS concepts judged feasible may vary on
the anticipated tiwme and effort required to implement them. Implementation
time affects the cost of developing a system and therefore influences the
evaluation of cost against expected benefit. A significant portion of
development time for a specific IKAS depends on the time requived to build .ind
stabilize the host instructional system that the IKAS will serve. Arother
determinant is the scope and novelty of the targeted IKAS capabilities: the
greater the anticipated difficulty in implementing ¢ capability, the greater
the expecte:d iwienentation time. Novelty of a concept can be assessed by
contrast (o prior ef forts 1t developing knawledqe cngineering aids. These
prior eftorts also provide a svurce of data tor anticipating expected
development times ard resource requirements.

REDUCTION OF Dr TIME-ON-TASK. One measure of the value of an IKAS is the
~xtent to which it reduces the time DEs must invest to assist in the
devalopment nf an instructional system. If an estimate can be made of the
increased efficiency of the IKAS over manual knowledge acquisition, savings of
it time can be estimated by considering the relative proportion of overall
system development activities involving the DE for which the IKAS will be
used.

REDUCTION OF KF TIME-ON-TASK. The NAVTRAEQUIPUEN statement of work emphasized
the inherent value of reduction of the KE's time and involvement in the system

bt T SV G et - bt

NAVTRAEQUIPCEN 82-C-0151-1

development process. The cost and scarcity of skilled expert systems builders
perhaps makes this criterion an important consideration in attempting to
reduce costs. While the development of automated capabilities for acquiring
instructional knowledge should reduce the requisite involvement of the XE on
that portion of the system development tasks, the presence of the system will
most likely entail other, new activities for the KE. For example, the KE
might need to use the IKAS himself to review the results of DE-machine
interactions and obtain knowledge he needs to perform other tasks. An
understanding of the entire system-building process {see Section II) is
critical in 23pplying this criterion.

EVIDENCE FOR USER REQUIREMENT. This criterion reflects the extent to which an
IKAS is perceived by potential users (both DEs and KEs) as necessary to
supplement or replace manual methods. Even if the IKAS does not reduce time- :
on-task for either DE or KE, it may be required to alleviate the difficuities i
of scheduling face-to-face interactions between DE and KE. DE participation
may not be possible unless it can be done on a spontaneous, opportunistic
basis proximate to the DE work place. Inputs from DEs and system builders are
instrumental for determining whether there are user requirements for an IKAS
in order to build a knowledge-based instructional system for some domain £
class. Thus, when scheduling and geographic constraints restrict the
interactions between KE and DE, the IKAS could serve as an institutional
memory to record for subsequent review the interactions between the system and
the DE or KE.

y

INCREASED FUNCTIONALITY. Aside from possible time savings and increased
convenience, an IKAS may improve the quality of the knowledge obtained for the
instructional system. It may accomplish this through the use of more
systenatic and thorough interviews than would be conducted manually. Relative
functionality can be estimated by comparing the capabilities of the IKAS to
those achieved manualily, as evidenced by prior efforts. There is an obvious
tradeoff with concept feasibility and time-for-implementation for approaches
that attempt to significantly increase functionality.

GENFRALITY AND SCOPE OF APPLICATION. Generality and scope refer to the
breadth of applicability of the IKAS and to how much of the instruction
typical of the domain can be accomplished via the instructional system. They
11so refer to how much of the knowledge used in the instructional system is
obtained by the IKAS and to the extent of IKAS's role in the life-cycle of the
instructional system. Ideally, when the domain knowledge is constantly
changing, the IKAS should play a role in eliciting new knowledge from the DE
to update to an existing system.

Dt BACKGROUND AND SKItL REQUIREMENTS. A significant determinant in the
success and utility of the IKAS will be the extent and type of knowledge
{apart from domain-specific knowledge) the DL needs in order to use the [KAS.
For example, it seems likely that an IKAS design will need to assume its user
has some computer background or skills. Alternative concepts may vary in the
degree to which other special knowledge--about learning and instruction and
about knowledge-hased systems technology--is needed by their users. The
number of DEs for any problem domain who are potential users of the IKAS
decreases as requirements for special knowledge increase. This factor can

make a system "nrogsinle
Yy N P

Cevin iy
functionai it oy o
SRR TR .
W
Tt L ,
Laone ‘ :
3 L 3 .
A= N i
ey
DR R
Lty o

offectiveres ‘

ALTERNATIVES

1 N R
i N
[LTS N
ST, : .
OXOY L IR

PO
t
v
:

s - N

% * [ook
I [IR e
v oo

ot

RATAN

P

b

N + .

o ! .
ey ' v ' .
R

e e '

I

: v v ‘
Clmaelo e AR
- SN TRt N R

. B . N
et ‘

within 1 oot “aned "oty

Spee Ty [T S
PR gr P . BT '

their deias 1 uanest,
af tacks, the venndge

coan v of Lrgunizatiooan cor

P vess i led DsL e Aty

EVIANEI R R R U et NEC2SSENY TGO Lowdd
Co O A N o that vrouining
. R R TR EATUPRY AT E SR FH ORI I T j
; R ! R Lo 1 the o7
S 2 . v
- i N ' i .
T o T) Tedus et Ty ot
— - iting the develgpment -
"o oobonctives woula b
AN T Treoeadreed know e
A [TooL e Ak 07 v STrLetIon o
(T PR FY N PRy d opart-tae
sl eV apabe Ve o oan adapt e
ST W T e e o7 et censu T tation
VR R AR S I R L nt ok
o erym Py G Uy =D Te Y ann by
. : PR 2ol 7 Ty e arnd ’V‘E‘i\}fﬂ”f\w
0y ’ IR A IO I Sy S A
O o teo o W dge g iaap i
T e oy omoanas fore
') ol ude thar Y
. ' st rary o 0 Tay
‘ e A
T a0 Jitems witn Jne
T DY S w0 DaEE By donn A e
oo EE anowedge of T
oalae e ERE ST NN N A EA S ATC 1T B
P T e e e o bt
i HE v, A STV R FE S L
' L ARETRNR B AT AERToRE hA‘-, Vo o the N
A R AT KA A TUR T Lot AL B A SR B (OTH K I
Wrve oo toriegr ty neen saefyl onty for Kis, net Gbc
i Coea Taoee T IRAS Ty moare modest in o scape .

weverg o A eatam anogtd e limited to elicitar oo

inoan Sastructiceal system with
ol et of Instrootd ;
osten Lont e e el sk

anal capal

N

R

ol probioem amnaias. L Class might subsume sever o

whidm stos 4 set o Donce
L R U SR TN HETIEANENTY |
O cxalulO, operatin g g rada
Powlobh e st aggicheg b)

priiiies. rurtiee e

rainis on the 1
s of an [KAS' ~

a particular
Tiartod oty tho

pie an ! veiation, v
“ich gy difEo e e
mdy represent a Lo
10 i fFForent

NAVTRAEQUIPCEN 82-C-0151-1

characteristics of and procedures required by different specific surface- or
air-search radars.

Restriction of the scope of the IXKAS in this fashion will permit the use
of semantic and pragmatic knowledge of the problem class for effective
management of knowledge acquisition interactions. Our concept therefore
includes the use of class-generic knowledge by the IKAS to guide interactions
with the user. The abiTity to use knowledge about a class of tasks to guide
the acquisition of instructional knowledge ahout specific tasks in that class
imposes two important requirements on the nature of the IKAS. First, the
design of the instructional system must be stable, so the knowledge of
structure and capabilities used by IKAS does not become obsolete and
inappropriate. Second, the development of the IKAS for a class of tasks
depends on at least a partial implementation of one application within that
class. This fmplementation would assist the process of identification of
class-generic knowledge and structure using general concepts induced from the
specific task under study. The resulting IKAS would be capable of supporting
the development of the identical instructional system for other members of the
domain class.

The following section discusses three promising alternative realizations
of the IKAS concept. The alternatives were selected by considering the
¢riteria described above and assessing the cost and expected benefits of
development of the concepts. We perceive tradeoffs among the criteria as
applied to the alternatives that prevent us from identifying any one of them
as best from a technical perspective. However, each of them appears to
satisfy NAVTRAEQUIPCEN's stated objectives and entail a feasible set of systen
capabilities that extend the technology currently available to the developers
of computer-based training systems.

ALTERNATIVE 12 AN ATU 'OR THE SPECIFICATION OF PERFORMANCE MODELS. [apert
systens--knowledge-based systems designed to act as consultants for domain
speeialists--embody a competence model, the knowledge that ought to be used in
aroblom-solving <ituations. Xnowledye-based instructional systems (KBIS), if
they are to implement performance diagnosis for trainee evaluation or
selection of instructional Tnterventions, also need performance models. These
models contain representations of the knowledge learners may actually apply in
situations. Performance models describe errorful or suboptimal behavior
relative to the competence model. While expert systems need to generate
actual comnetent problem-solving behavior, some KBISs have been able to
perform performance diagnosis with descriptive, less complete competence and
performance models, different from those employed in expert systems. As a
consequence, constructing a KBIS can have substantially different requirements
for knowledge acquisition than an expert consultation system (Brown, 1977
(lancey, 1981).

Nne alternative IKAS concept focuses on the acquisition of the knowledge
necessary to construct performance models in a diagnosis module of a KBIS.
This knowledge includes:

1. Descriptions of non-expert behavior (errors, parametric
varigations) in the domain

51

1T 8 gt My

:
i
%
:
;

h, Characterizations of

from learners

¢. Causal

i . st

Append i«
surfacs o

would he manmiig
The KE would oo
prior to use o1

in o the coaperone
and performance 1

¥31S for the clan!

Ny

o.

A
e €

v, Ther :
teagr gt e
Aande iy oin v SRS
[EA TR LSS SN SN

conpetense miee!

thus few precedso, o ow
In the aroe-

TKAS.”
nayoff. Most o

espacially Tor oo
performance div

knowledge undorly o

effect, to the mna:
comploxity of oo
might shortcut

Jomaig class oy
STagntfioant e o

heoothe st
competenee mee D

s lasees of donain

represent She e Con

spect fic domyine

precedents suggne?
Toosely defined o
ant troubioshoont

Sl dng T 1o 0 ne-expent

variations on comperoncs naded

AWTRACQUISTEN B2-0 -0t

cituatiane that ~vy. ann-expert behavior

turs o oxpressed as

Netweon o “7oand a DE in Navy

et o
types of enuwlongs .,

tne v competence model
T T TR ; “F 1nterviews of DE.
¢orT b lecturs and oncode the competence wodel

EIPSRE S
DERRE

r o woula e

ve e manus !

: - W SRR N
; SRR Lo its
: b i ise performance

‘ “odel development
feaan o process coinpered even to
cansyrtoconsyitition svstems., There are

vioowlieage coouisition on which to base an

) his Al ternatioe woult have 2 relatively high
eeemoptialte wigeificent ceopabitities for KBISs,
” iatar-ndted fednine, regquire autcemated
Pa, Teoadaitior | dovalopmeno of an TKAS for the

A

i

R

domiing with an offe ¢

Tadquents are Jar

CEor the et

i Tdore fami g o

vy

vt

Wi

e

'

sting 0y
Loposed

e \‘m;xl'i e
that imolementy

B

P

eneea ity our thie

SR (Y

P o ide 1S

vathor

e .fﬂy"],‘, T

oo diagnosis could contribute, as a side
hotechentogy. e relative risk and
Sremtoand thee Ta o0oan existing system that
ment of 8 firci K317 90 the selected
1o of this alternative could be a

s

<
")
Pl

.
Vo

poecfo ey oongdel s T e nenaent on the
, o atteesgtive would be Timited to
krowledge and tormalisn{s) used to
comnae s wae b he appropriate to several
Leag. o o rooceducal types of knowledge,
ippropeiate formalisms dn not generalize to
Jomain Tisees such s radar or senar operation
Vit itation eauiotient seem Ly be candidate
¥aerality, but at this point such
e oather domaing {e.q., Navy platform

Aegroc of

fravie o

DTS A TR

o ticulated by system
doiain experts.

dunain-<pecific knowledge
fancozenesy Lo bnowledas in both the competence
impiensentation of the first
aotrdin-onecific nerformance models from the

e

NAVTRACQUIPCEN 82-C-0151-1

defense tactics), it is not clear at what level of abstraction {ships
within classes, classes within platform types, types within mission
areas) generality can be achieved for this [KAS alternative.

¢. It is not evident whether this system would reduce the DE's
time-on-task during the development of a kBIS. The DU would be involved
in both the manuilly-based development of the competence model and the
IXKAS-based development of tiae performance model. It i< possible that the
duration of both could be reduced over a fully manual approach because
the IKAS wil' e ahle to use existing class-generic krowledge in both
types of models. The Kf's time-on-task would be reduced to the degree
the IKAS replaces him in eliciting performance models from the DE. It is
1ikely that these savings would be substantial because the knowledge
emhodied by performance models is typically many times greater than that
ot the corresponding competence model. However, total time savings would
undoubtedly be offset to a degree by the KE's need to familiarize himself
with the performance models. Although a key assumption of the general
IXAS concept is that the KE will not undertake modifications of the KBIS
wrchitecture, there will certainly be some necd for the KE and DE to
refine and revise the kncwledge acquired using the T¥AS, To do so, the
KE will need to spend time acquainting himself with that knowledge.

1. This IKAS concept will require some training for the DF so that
he can us? the system interface and understand the knowledge
vepresentation used in the KBIS. This background will be necessary to
allow the DE to engage in meaningful dialogues and to provide useful
information about potential variations from competent behavior and
situational parameters that affect performance. An important advantaye
of this alternative is that such training can be incidentally embedded in
the Tnteracticns between the KE and DE during development of the =~~~
?GEPE?Eﬁgg_@ddéT.“TFEEETiﬁfErEEtYBES”WiTT—Yﬁtr63665 the representation
Tincepts to the DE, ‘turther, if the KE works with the DE while using the
IKAS interface to develop and test the compotence model, then the DF
should become sufficiently familiar with the IKAS that his later use of
the system can be supported largely by rcference manuals, with little or
no need for formal tutorials. Thus, while this IKAS alternative requires
hackgr-und and skills for its use, we anticipate very little ardicated
training will be needed for users to acquire then.

ALTERMATIVE 20 MODIFICATION OF AN OPPONENT SIMULATION rOR TACTICAL

TRAINING. The second alternative for IKAS concept development addresses a
trainiag capability that does not depend directly on performance diagnosis and
the perfermance wodels it requires. The capability involves providing the
capahility for the Of sr instructor to define and sequence the set of problem
situations to v presented to the learner. Providing this capability to alter
tne training system would allow the instructor to develop curricula, monitor
and participate in training exercises, and contrsl the course of instruction.
The specific oxample of this capability we will consider here entails the
~adification of the behavior of an automated opponent in a tactical training
simylation. (However, K there are analogous capabilities in other domains--for
craple . the manner in which a piece of equipment will hehave in g maintenance
training simulator.)

——r———

NAVTRAEQUIPCEN 82-C-0151-1

The system concept assumes that the opponent simulation is based on a
rule-based representation of the actions and procedures the opponent should
execute in tactical situations. Further, it assumes that prior to use of the
IKAS, the definitions of rules, high-level procedures, and primitive actions
are sufficiently complete that the opponent simulation is operational. At
this point during system development, its behavior will probably represent an
initial formulation of a skilled opponent. Use of the IKAS would allow the DE
to specify variat’ons of rules and procedures governing the opponent's
behavior. Such modifications would produce alternative, perhaps suboptimal,
opponent behaviors--performance models for the opponent, as opposed to
performance models of the learner as in Alternative 1. The variations might
include both structural and parametric changes. Such modifications might be
intended to achieve a number of goals--variation in skill levels, use or
avoidance of particular tactics or systems, or the creation of particular
tactical situations for the trainer to respond to. Such variants could be
used for a numher of pedayoqgicael purposes, depending on the training goals of
the instructor.

The domain of this system concept is similar to that pursued in previous
research sponsored by NAVTRAEQUIPCEN (Alperovitch, 1982). That work, however,
focused on the acquisition of an initial set of procedures and presented the
user with a programming-like task requiring significant knowledge and skill,
The approach advocated here uses the IKAS to aid the DE in specifying
modifications of knowledge the sv-<-tem alr2ady contains. That knowledge,
including class-generic knowledge about the characteristics of variations
obtained in the manual development of a first system, can be used by the IKAS
to provide greater system initiative in suggesting what variations might be
generated and what sort of modifications might achieve them. 1In addition,
because modifications are always made to an operational set of rules and
procedures, the DL can develop them incrementally and exercise them in the
KBIS through an interface to the IKAS. The DE can thus approach the task
empirically without a fully developed abstract understanding of the opponent
simulation.

This alternative has the following characteristics:

a. The relatively limited scape of the knowledge to be acquired by
the IKAS in this ajiternative argues for its feasibility. The system
concept reduces the complexity of the task of acquiring procedural
knowledge by 1imiting IKAS activities to secondary elaborations, thereby
avoiding initial formulation by oprn-ended specification. However, we do
not perceive significant differences in feasibility and risk between this
concept and Alternative 1. This alternative does have greater potential
for increasing functionality of knowledge acquisition beyond that of
manual methods. The ability to test modifications by executing the
entire KB8IS could increase the DE's productivity and decrease the need
for KE involvement in post hoc knowledge-refinement. The generality of
this alternative is 1imited to a class of tactical problems with a common
semantics for situation and action descriptions: tactics problems
involving physical threats and the movement of platforms.

b. This alternative may have a more rapid implementation time
compared tn Alternative 1 if it were coordinated with recent or ongoing

NAVTRAEQUIPCEN 82-C-0151-1

efforts to develop intelligent opponents for simulator-based training.6
In this case, at least some of the effort required to iimplement a first
KBIS in the domain class could be circumvented. Coordination would
depend, from a technical standpoint, on the ability of the
representations used in the existing efforts to support incremental
elaboration. The implementation time advantage may be augmented by the
relatively smaller scope of the knowledge to be acquired by the IKAS. We
also perceive a greater requirement for completeness in specifying
competence models (as in Alternative 1) than in specifying alternative
models of opponent behavior vic a vis the instructional capabilities that
mijht use those models within a KBTS,

¢. The implications of this system concept for DE and KE time-on-
task are similar to those for Alternative 1. DE time should be
comparable to that in manual knowledge acquisition, while KE time should
he reduced by the DE's usc of the IKAS, with the net savings affected by
the extent to which the KE must engage in compensating activities. The
relative savings depend on what other capabilities are 1ncluded in the
KBIS (e.g., performance diagnosis and instructional interventions).
Since this alternative for IKAS development does not affect acquisition
of knowledge for those capabilities, the overall role of the KE in
knowledge acquisition could remain significant.

d. This system would require DEs to have a significant
understanding of the knowledge representation formalisms used in the
KBIS. The predominantly procedural nature of the formalisms for
implementing an opponent simulation (as opposed to descriptions of errors
and situations in Alternative 1), would most 1ikely ruquire greater skill
and knowledge of the IXAS users. As in Alternative 1, however, the prior
person-to-person interaction between the KE and JE to develop the initial
opponent model should provide the DE with the requisite knowledge for
using the IKAS.

ALTERNATIVE 3. COMSTRUCTION 0OF KNOWLEDGE BASES FOR INSTRUCTION ON DOMATH
FALTS. The third alternative we describe emerged from interviews with systen
builders and DFs at the Navy Personnel Research % Development Center (NPRDC)
(see Section V). In discussing our concept for a class-generic IKAS with then
we learned that an NPROC project had developed an experimental prototype of a
neneric KBIS (McCandless, 1981; Crawford and Hollan, 1983) and that attempts
to have Dis implement knowledge hases for new problem domains had encountered
difficulties. They believed that an IKAS for the system is necessary if its
application to other domains is to become cost-effective.

The NPRDC system was first implemented for the surface warfare domain,

Ot frorts we have identified include Contracts N61339-80-C-0079 (Naval
Training Fquipment Centoar) and NOO014-82-C-0653 (Office of Maval Research).
The Navy Personnel Research & (evelopment Center has also proposed research on
tactical decision making training that wight encompass the use of opponent
simulations,

NAVTRAEQUIPCEN 82-(-0151-1

where its obliective wis to teach the concepts and facts Tactical Action
Officers (TAO) musi memorize in order to perform threat identification,
assessment, and counter-assigneent. We will thercfore refer to the system as
the Computer-based Menorization System {(CMS). The £MS was implemented with a
highly wmodular architecture. A semantic retwork is used to represent the
domain concepts and facts in a relational databesc. The database describes
taxonomies of objects and object attributes and relates particular objects
with their attributes. Instruction is provided by a set of seven modular
"games" (e.g., "twenty questions”, “concentration”) eacn of which
independenti; uses the semantic natwork to genereie problems. Gsneration
depends solely oo the network structure, not the domain content.’ Thus, the
CMS architecture s actuatly neneric to any problien donu.n for which concepts
and facts can be descorived using its semantic network forma’ism and for which
memorization of facts is an instructional objective. It has subsequently been
applied at NPROC to knowledge nases for the domains of €4, ECCM, and sonar
analysis.

The current procedures tor creating new knowledge bases for the CMS are
not conducive to direct use by DEs. The trowledge base 15 created using an
off-Tine editor anda "compited” for use in the (MS. The physical interface
requires thorough “nowlidge o7 the programming system in which the CMS s
implementid. The ditor 13 separate from the CMS and places the knowledge-
hasce devsispment 00 cns soleiy under the user's initiative with no conceptual
support--for exanple, ny using existing knowledge bases ana data about their
development. 11 such conceptual support must be obtained externally by the
user. The lack of conceptual support has manifested itself in the ability of
one DE to master the physical interface and create g svntactically alid
knowiedge nase, which naonctheless provided inaasquate hehavior in the CMS
games because of the 0L’ s inability o anticipate how the knowledge in the
network would pe organized and uced to qenerate nrobicms.

Thus, a ti rd alicrnative for purcuint 1985 development is to buiild upon
the risting (MY work, The objectives would ne to previde conceptual suyp, ort
and a more ac.es3 dle whysicai intertace for the user. This alternative has
the following characteristics:

da. Feasibilioy of this altoraative is highor than for Alternatives
1oant 72, The esictenco of a generic KELS already in use by Dbs for
knowledge hase developmenl §s sersudsive evidence for the tractability of
the TKAL coro-ont,

b The generality of this alternative is somewhat different from
the concent of agencrality we have introduced previously. In the
oreceding discussion, we used the concept of a «1lass of domains, to which
an 17AS and va0S would apply. Each momber of 3 ¢lass would have a
ciqnificant averlap of semantics and pragmatics and utilize a cormon set
of instructional wetneds. The CMS anproach achieves gyenerality by
fsalating o rype of knawledge that ie a part, possibly a very small part,

!

Two excentions are gaaes specific to the TAQ domain that use graphics.

wyis

NAVTRAEQUIPCEN 82-C-0151-1

of the knowledge in a very large number of problem domains whose other
types of knowledge may be very different. It thus achieves generality
across domains by greatly limiting scope within each domain. That is,
the system would address only factual, conceptual knowledge, which is
only a small part of what constitutes competence. One consequence of
this approach to obtaining generality is that an IKAS for the CMS will be
unable to use class-generic semantic and pragmatic knowledge for dialogue
management. Instead, dialogue management will have to be based on the
syntax of the network representation and on knowledge of how game
capabilities access the knowledge base. Thus, this alternative appears
to achieve feasibility and generality across domains at the expense of
Timiting the power of IKAS techniques available to the system and the
completeness of the knowledge that can be acquired.

c. The implications for this alternative for DE time-on-task are
again difficult to assess. Within the scope of applicability, KE time-
on-task would be greatly reduced since, in contrast to Alternatives 1 and
2, there is no programmatic requirement for KE involvement in the
knowledge acquisition process. We expect however that some ad hoc KE
involvement for consultation and tuning would be required in most cases.

d. As an exploration of IKAS technology, this alternative would
involve less time and resources than Alternatives 1 and 2. The generic
K31S exists and several problem domains have already been implemented
using it. New effort could be focused on the IKAS architecture and
implementation, unless some re-implementation of the CMS into a more
tractable software environment was deemed necessary to support IKAS
functionality. That the scope of application is limited to acquiring
only declarative knowledge would also serve to control costs and
implementation time for this concept.

e. Users of an IKAS for the CMS would need to have an understanding
of the semantic network representation and its relationship to the
mechanisms of the instructional games. This understanding would have to
be developed by either explicit training or by training embedded in the
IKAS. The latter training might utilize examples from previously
implemented domains. The degree of initial training required would be
reduced if the interface between the IKAS and CMS facilitated an
empirical approach to knowledge-base development (as in Alternative 2).
In such an approach, DEs could readily experiment with possible knowledge
formulatinns using the CMS games. Because the knowledge involved is
solely declarative, we anticipate that the physical interface to the iXKAS
would require computing skills similar to those required by a stand-alone
word processor. In contrast, the specification of procedural knowledge,

5 suggested by Alternative 2, has some of the characteristics of
programming and would potentially require more sophisticated computing
skills.

s

NAVTRAEQUIPCEN 82-C-0151-1

SECTION ¥
IKAS DESIGN CONSTRAINTS

In this section, we consider further constraints on the design of an
instructional knrwledge acquisition system {TKAS). In the previous section,
we enumerated several criteria for evaluating alternative IKAS concepts.

These criteria reflected high-level technical and organizational concerns.

Tre present discussion will consi“er issues that bear upon the design of user
interfaces “or [KAS systems. The sets ot issues are not independent, nor 1s
the design of an IKAS user interface independent of the purpose and features
of the KBIS it serves. Our main objective for this section is to identiiy how
re ‘uirements for easy usage of an IKAS influence the design of the system s
user interface.

We first enumerate importst dimensions of “esian variation in user
interfaces, providing for nach some background discussion of the current
methods and techniques associated with that aspect of interface design. We
then discuss the design requirenents in the contert of the general 1KAS
concept and its three alternative realizations presanted in Section IV. rhe
evidence supporting our conctusions about these requirements draws upon the
literature on human interface desiqn, but it comes primarily from statements
elicited from a sample of Navy Dbs, builders of state-of-the-art instructional
technology, and developers of knowledge-based systems. We then present
recomnendaticns, which are based on assumptions about host system architecture
and capabilities, for formulating a user interface design for a specific IKAS.

We do rot present here a general review of the growing literature on
human factors in the de<ian of interactive computer cystems. Such a review
was beyond the resourcas and scope of the current project. In any case, our
view of that literature is that detailed, substantive conclusions about
effective interface design are specific to task applications, such as werd
processing and database nuery. The interiactive comnuting tasks that have heon
studied are very different from the task of transferring new knowledge to 2
knowledge -based system. Hence, specific dutails of user interface design uscd
in other interactive conputing tasks are of limited use in designing the
interface to an IKAS. More general principles of design of the type we will
discuss are the common lTore of system builders and are difficult to attribute
to any one effort. They are also vague. For thic reason, we refer to them as
"fanues” of dewign instead of ac principles of design.

USER INTERFACt [SSUES AND METHOOS

OQur user interface issues, derived from discussions with Navy DEs and
instructional system bufliders, are similar to others identified in the
Titerature on interactive computer system design (see recent reports by Ramsey
and his colleagues [Ramsey, Atwood, and Kirshbaum, 1978; Ramsey and Atwood,
19797 for a bibliography and review of this literature; see Martin [1976] and
Simpson [1982] for similar classifications). A critical feature of the issues
is their interdependence: particular interpretations of how an issue affectrs
design constrain interpretations of other issues. A second critical feature
is that the methods used to achieve a design feature associated with an issue

BRSO

N

NAVTRAEQUIPCEN 82-C-0151-1

are generally not applicable to all interface designs. Instead, most designs
involve hybrid methods.

MEDIA. The issues surrounding input/output media are perhaps the most obvious
in user interface design. The CRT has become almost a universal output
medium, but issues about display details--graphics, screen resolution, color
output, muitiple displays--remain. Other output media currently receiving
attention include videodisc and computer-generated voice and sound. Input
media include the typewriter-like keyboard built into most CRTs, devices for
spatial designation and manipulation--touch panels, light pens, bitpads,
“mice,” and voice.

A major rationale for designs incorporating multiple media has been a
general belief that distributing interaction functions among perceptually
distinct channels is beneficial. There are more specific issues as well
regarding input mode and the organization of interaction that are connected
intimately with use of media. Input mode may scale from open to closed, where
open denotes responsibility for the user to remember and structure "Tegal”
inputs and closed denotes the system's responsibility to continually inform
the user of "legal" inputs which he may select. The open mode of input is
typically accomplished using artificial languages, which may approach natural
Tanguage in their flexibility and complexity. Closed mode is exemplified by
methods such as menus and templates.

Related to input mode is the organization of interaction. At one
extreme, interactions can be organized Tinguistically. ~They occur on a
dimension of time and use linguistic devices for reference to earlier events.
At the other cxtreme, interactions can be organized spatially. They reference
nbjects and actions by direct manipulation of the structure of visual models.
The temporal connection between action and effect is discarded (at least in
the context the interface provides to the user).

The linguistic organization of interaction can be combined with both open
and closed input mode. For example, the system can provide its output as text
and accept inputs as command language inputs, choices from a set of
alternatives via a keyboard, or choices made by pointing to its text output.
Many systems mix both input modes. Much recent interest in spatial
organization has been motivated by the objective of making the closed input
mode more efficient. However, spatial organization is also compatible with
open input mode. Image editing systems, for example, accept typed inputs or
sequences of movements and button signals from a mousc.

RESPUNSTVENE S, The physical responsiveness of an interactive system is a
commor Tssue. Poor responsiveness 1s held responsible for both undermining
motivation and directly disrupting the user's thought processes; efther case
reduces productivity. On the other hand, it is possible that response can be
too fast for some tasks and some users when thoughtful behavior is required.
The user should neither feel delayed nor pressured by the system's
responsiveness. However, in practice too rapid response is not a serfous
concern of system designers.

Poor response has both delay and variability components. It is commonly
thought that extreme varjability is more disrupting than mere delay.

RS 4

NAVTRAEQUIPCEN 82-C-0151-1

System response depends on the capacity and loading of the entire
hardware-software environment. {1timately this means that achieving a better
responsiveness may entail eliminating possible fedtures of the target system.
Unfortunately it is usually difficult to predict system responsiveness prior
to implementation. Thus, one method for addressing system responsiveness is
to design and implement features in independent and separable modules to
permit alternative system configurations.

Anot"r method for addressing system delay is to signal the user about
expected delays of response. This involves endowing the system with knowledge
about itself so that it can indicate to the user when it is about to perform
operations that involve considerable time.

The use of networks to gain access to systems on which the user software
executes complicates the responsiveness issue. Networks introduce delay and
variability that the original designers and implowmentors can only roughly
anticipate. In addition, they reduce the utility of signalling methods, since
it seems likely that no signalling is better than the incorrect and
inconsistent signalling that a system operating across a network can provide.

FLEXIBILITY. Flexibility involves three characteristics of an interface:

a. Alternative input possibilities
h. Alternative output possibilities
c. Handling of errorful inputs

The first two of these are related to the needs and preferences of different
users or of a single user accessing the system for different purposes. One
common method for achieving increased flexibility is the use of modifiable
Rﬁifilﬁﬁ that allow settings of switches. These switches can be referenced by
the user interface software to select alternative behaviors. Other common
nethods depend on the implemented physical media and input mode. GOne extreue
form of flexibility allows both open or closed input specification when
possible. Flexibility in open input is increased by designing a language with
multiple devices for expressing the same messaye to the system. This includes
redundent Texicon, alternative syntactic constructs, provision of defaults for
chided donpat, and resolution of anaphoric reference. At a lower level,
recoqnition of partial inputs also increases flexibility. For closed input,
such a5 menus, flexlbility is enhanced by use of multiple media--pointing
devices, keyhoard function keys-- as alternatives for selecting among the same

responses.,

A system in which errorful inputs cause a system to break--confronting
the user with the interface of the underlying operating system and requiring a3
restart--is called brittle. Systems are made less brittle by methods such as
prevention and trapping of events that cause operating system interrupts and
by nther “worst case" assumptions in input handling code. More advanced
approaches add spelling correction (for open input mode)} and other "do what I
mean™ capabilities for interpreting anomalous inputs. 0One rationale for the

nuse of closed input modes is that they are a relatively simple technique for

Qi s
TP £ S N L PRIESS P T SO

Prmw ———— —'F'-FF-lE'!!"""-"Nl'llIIlllllllllll!lUllllllllllllll'ull--.--.-................,..‘!

NAVTRAEQUIPCEN 82-C-0151-1

making a system more robust.

CONTEXT. Preserving and providing user access to the context of the human-
machine interaction is important for providing recovery from errors,
especially those resulting from user inputs that are semantically meaningful
but have undesirable consequences. The user needs to be able to recover from
such errors by invoking an "“undo" command. Preservation of context is also
important for providing capabilities for users to easily interrupt their work
session and resume it in the future. Methods for achieving this capability
are typically linked to conventions for process and file manipulation specific :
to the host operating system. ’

User access to context is important in conceptually supporting the user
in complicated activities with the system. The simplest type of context is
feedback about the affects of user inputs. It plays a role both in learning
to use a system and in preventing the propagation of semantic errors through 2
sequence of events that makes them difficult to undo. In a linguistically-
oriented interface, feedback usually comprises descriptions of effects or
naraphrases of the user's input. In a visual-spatial interface, feedback
comprises perceptible changes in the visual model displayed to the user. In
the latter case, the association between previous user inputs and their
results is more difficult to represent, since the model typically has no
natural means for expressing the order of effects on it. Thus, visual-spatial
organization may make it more difficult for a user to remember or reconstruct
what sequence of inputs led to a particular situation. On the other hand,
that type of interface does make the net of all effects continually available
to the user, whereas in a linguistic interface the capacity of the display
medium 1imits the prior history that is immediately available. The
traditional form of interaction history for linguistic interfaces is a
nardcopv record. Newer methods dependent on high-speed, high-capacity
displays make records of prior interactions available via interactive
"browser” tacilities.

Anuvther issue involving context cuncerns the handling of multiple and
subsidiary contexts. Systems for complex tasks may include different muile,
for Jifferent activities. The scope of a sfngle activity may be too great to
allow all relevant information to be displayed simultaneously. Under such
circumstdances, the user cdan lose track of the local context of his
interaction. (ne approach to this problem is to alway< provide cues, either
linguistic or perceptual, about the current context and its surrounding
contexts. An additional method s to make transitions between contexts non-
destructive by preserving them and providing mechanisms for returning to them.
Such facilities can include user accessible information about suspended
contexts and mechanisms for alerting the user when activities in other
contexts are incomplete. This kind of active monitoring is dependent of the
interface's use of knowledge about the task domain.

HSER CONTROL. User control refers tc the system's facilities for allowing the
user latitude in the way he approaches his task. It overlaps with the issue
of flexibility regarding control over how to enter inputs. More
fundanentally, it includes questions about the degree to which the user can
determine the order in which he performs different subtasks.

NAVTRAEQUIPCEN 82-C-0151-1

Interfaces that give the user extensive contro! of interactions require
jreater resources for context management. They generally require more initial
Tearning tine to k> used effectively. However, they can enable more efficient
use by experienced users. Interfaces that assume wost of the initiative in
interactions require some internal representation of an acceptable
organization for the task. Thus, they are more difficult to implement for
complex tasks. They can make heavy use of closed input modes and thus can
ecnable easy use on simple tasks by naive users. The need for users to take
initiative increases as the scope of a task increases. At the very least,
they nerd the «bility to return to earlier interactions to change their inputs
or review the events without losing the intervening interactions. One method
for dealing with the user control issue is to provide capabilities for both
full user controi and for "hand-nolding" by the user interface, with the
ability to switch between modes as desired. This approach requires maximal
support for context management and more intelligence in controlling system-
determined interactions than can be provided by a rigid script.

USER KNOWLENGE REQUIREMENTS. Any system design must consider what knowledge
users must have to use a system and how they will obtain it. It is obvious
that the user cshould not need to learn more than necessary to perform his task
in an effective way. Layered designs can help minimize user knowledge
requirements. For oxample, insulating the user interface functionality from
the underlying system structure helps assure that the user need not know about
the host operating svstom. However, other knowledge of the system is
necessary to promote effective interactions, just as a conversation between
two people requires certain shared knowledge and assumptions. At the very
Trast, the user must have knowledge about the models of the task domain that
the system incorporates so that he can use them or map his own models, if anv,
unto them; without such knowledge, the user cannot predict the effects of his
interactions.

The user can also perform more effectively if he has an understanding of
tho irteraction schemas the system employs. This can include various types of
ynowledge: the plan underlying system-controlled interactions, the feedback
ha can oxpect in different situations, tne syntax of cpen input mode
Yinauages, and the conventions for accessing and manajing context information.
itost of these, of course, depend on how other issues regarding the user
interface have been resolved, so in effect the other issues all have
“aplications for user knowledge requirements.

Approaihes to -atisfying user knowledge requirements may be categorized
tv external or dr 1al to the target system. txternal approaches may be
hased on either serection or training. Selection of users whose aptitudes and
poior expericnce hetter equip them to interact with a system is possible in
Yimited cases whero the system's purpose does not require universal
aece Sibility hy a population. Thus, for cxample, while it is necessary for
cuery telloe ain g bhant to access a system fur recording transactions with
rustomers, it may only be necessary for a subset of them to access a systom
far eatahlishing new tustomer accounts. Trainina based on off-line materials
and presentnd by human specialists is a common method for satisfying user
cnewedge requirements. This external training is typically not adaptec to
noer needs: it is unnecessarily expensive for some trainees and insufficicnt
for others.

NAVTRAEQUIPCEN 82-C-0151-1

Internal approaches to satisfying user knowledge requirements attempt to
increase accessibility by making presentation of the knowledge concurrent with
use of the system and adaptive to user needs. These approaches combine
several facilities in the system's user interface. Wsually, default control
of interactions is assigned to the system; that is, the system does maximal
“hand-holding” for new users. The interface also may provide integrated on-
1ine documentation and assistance. In any situation, the user can follow a
simple protocol to obtain a description of what is happening and what is
expected, without destroying context of the interaction. When the user makes
an entry error, corrective feedback and tutorial descriptions are presented or
available. In effect, individualized training is delivered as needed and on
request while the user is using the system. Another feature seen in internal
approaches is layered capabilities. Instead of opening the full functionality
of the system to the user, complex functionality is made accessible over time
either under the control of the user or an external monitor. Thus, users need
not satisfy all knowledge regquirements before they can e¢ffectively use a
system for some subset of activities.

DISCUSSION. The major conflict in resolving most issues about user interface
design is in balancing the desire for access by new and casual users against
the desire for efficient use by knowledgeable, Tong-term users. These
different classes of users are generally served best by different input modes
{closed vs. open), balance of system vs. user initiative, and degree of
~ontrol over preservation and access to context. The difficulty in addressing
both sets of needs in a single system lies primarily in the cost of
engineering an array of alternative mechanisms and the difficulty of designing
techniques for smooth transition among them. Engineering costs include both
the software design and the hardware resources. Increasing the features of an
interface lowers the quality of its responsiveness, which can make a system
unacceptable to both classes of users. Maintaining responsiveness as the
number of features increases requires enhancing the capacity and speed of the
hardware system. If hardware resources are fixed, then the interface design
must involve tradeoffs in functionality.

INPUTS FROM SYSTEM BUILDERS AND POTENTIAL USERS

As required in the contract statement of work, we interviewed scveral
potential DE-users of an IKAS in order to gather data--expressions of their
"needs and expectations”--that might be relevant to resolving issues in design
aof the sy-tem's user interface. We also obtained from the potential users
information that bears on the question of whether they can articulate the
knowledqge about their task domain that the Alternative 1 IKAS would be
designed to olicit.,

[n addition to potential users, we interacted with system builders who
have worked with DEs to build training systems. We discussed their opinions
about the feasibility of constructing an IKAS that could interact directly
with DE-users. We also interacted with system builders with experience in
building expert systems for knowledge acquisition. The following sections
report the results of this data collection effort.

NAVTRAEQUIPCEN 82-C-0151-1

MubtL

Selection of respondents. We sought Navy DEs who had had some experience in
devaTopment or use of training technology. We wisned to establish with our
interviewees 4 mutual understanding and rapport concerning our objectives.
Therefore, we decided that commurication would be enhanced by (a) our
knowledge of the respondent's field of expertise, and {h) respondent's
familiarity with computers and computur-based instruction. Practical
limitations inczluded our ability to identify and arrani2 access to active Navy
personnel with demanding work schedules.

Our DE sample comprised four individuals contacted either through our
colleagues in the Navy R&D community or through cur activities in other Navy-
sponsored R&D projects. Three are DFs in surface warfarc tactics, and one is
a DE in sonar operation and interpretation. These individuals were assigned
to positions at the Navy Personne! RRD Center (NFRDC) and the Fleet Combat
Training Center (FCTC) in San Diego, California, and had authority to interact
w#ith Navy R&D contractors at their own discretion as part of their job. They
were either actively invclved in training technclogy development or in
training.

One group of systew builders comprised six civiiian Navy employees at
NPRDC. These individuals are engaged in R&D efforts to design and implement
nrototype training systems for a variety of applications. Some of these
individuals had been 1nvolved in the same system building efforts in which our
6 respondents had participated.

We also interacted with two systemr builders at FCTC. These individuals
were Navy officers who were building a system to be used in constructing
embedded training for the Navy Tactical Data System {(NTDS)--in some sense, an
iKAS. Their particular concern was in user interface design to suppert access
t0 the system by untrained, low-skilled users (i.e., not DEs) whose task would
be to enter existing hardcopy specifications of curricula into the system.

e interviewed one other Navy system builder at the Naval Oceans System
Command (NDSL) in San Diego. This individual had been identificd by our
respondents at NPRDC and NOSC as being currently inveived in building a
knowlcedge acquisition system for a Navy expert system.

At various peints during the project, we discussed with colleagues from
the Stanford Unifversity Al comunity the feasibiiity of automating knowledge
acquisition from NPs and our particular concepts for an IKAS. These
ndividuats all have experience as knowledye engincers,

Intervicw methed, Interviews were arranged and conducted by Keith Wescourt of
the project staff. Prior to the scheduled interviews, copies of the projiect's
objectives from Lhe contract Statement of Work were mailed %o the DEs. Each
confirmed that re had read this material prior to the interviews,

The interviews were held at the respondents work places over a 2-day
perind. By their own choice and our agreement, the DEs at NPRDC and at FCTC
ware interviewed in single group meetings. The FCTC meeting altso included the
w0 Navy officers who were developing the NTDS curriculum development svstem.

The DE interviews were conducted in an informal style. Our staft wewber
introduced topics from a prepared agenda when and if they seemed appropriate

64

NAVTRAEQUIPCEN 82-C-0151-1

based on the respondents' apparent knowledge and opinions expressed during tne
interview. Since the topics were for the most part outside the day-to-day
concerns of the DEs, they were encouraged to respond to inquiries based on
their past, perhaps idiosyncratic, experiences. For example, they were
encouraged to evaluate user interface input modes by reference to particular
computer systems they had used. The discussion with each group lasted 2 to 3
hours. Both were tape recorded with the permission of the participants.

The interviews with Navy system builders were conducted as informal
collegial discussions. The 1- to 2-hour interviews at NPRDC were also
recorded. Interviews with other Navy system builders were arrarged
opportunistically during the visit to NPRDC. These interviews were shorter
{10 to 20 minutes) and were not tape recorded.

Discussions with drtificial intelligence researchers with expert systems
building experience in the civilian world occurred informally at several times
in the project. We will not describe these discussions in detail, but we will
indicate when the opinions expressed during these discussions either reinforce
or contradict those obtained from the Navy system builders.

Interview agendas. The agenda for discussions with the Havy system builders
TncTuded the folTowing topics:

a. What is the most difficult aspect of knowledge engineering?

b. How feasible is automation for knowledge acquisition? To what
extent does feasibility depend on dlready having task and domain specific
knowladge embodied in the automated knowledge acquisition system?

c. What user interface features does a computer system require to
support direct use by Navy DEs?

These topics were discussed in the context of an initial description of our
concept for an IKAS generic to a c¢lass of tasks. The respondents introduced
other topics which they thought were relevant to our system concept, including
the possibility of applying the concept to the enhancement af an existing
instructional system prototype (Alternative 3, de<scribed in Section V).

The agenda for the discussions with the DEs included a variety of
specific questions for each of the following general topics:

a. What is your experience in using computer systems? ({How long?
I'nor what purpose? What physical systems? What conditions of
accessibility? What training?)

b. What makes a computer system "friendly" to its users? (What are
the strengths and weaknesses of systems you've used? What general
proolems do you perceive? What changes would remedy them? What
preparation <hould be required before first using a system?)

c. How 4o you see the Navy with respect to the general trend for
increpasing computerization of society? (How do you place yourself with

»

-—

NAVIRAEQUIPCEN 82-C-0151-1

respect to that trend? With respect to the rest of the Navy? Are there
important differences within the Navy by age or job area?)

d. How useful have ccmputers been for operational and training
functions far your job area? (Arc there other opportunities? What
inputs from 0ts like yourself would be needed to develop the
opportunities effectively?)

e, What experience have you had in interacting with groups
developing oy stems for operations or training? (How did the involvement
occur? Were there specific rewarding and dissatisfying aspects? How
much background knowledge had to be exchanged before you felt progress
occurred? Do you have any thoughts on how computers might have aided the
system development process? What are the advantages and disadvantages of
becoming involved in such projects?)

f. What is the nature of knowledge in yaur field of expertise?
{How much of what is required for performance can be learned from forma)
coursework? How important are exercise and 0JT? Is it hard to describe
the knowledge derived outside formal coursework? How du you judge your
ability to evaluate another's performance in your job area? When you see
somagne make a1 performance error in your joh area, is it easy to see its
causes? How long would it take to describe your knowledge of how to dc
your job? ‘Mow would you help yourself remember and organize the
knowledge you would describte? Do you think there are computer techniques
that could allow you to communicate your description directly to a

system?)

[iime constraints and differences in the DE's backgrounds made it
impossible or inappropriate to discuss with each all of these topics. For
those topics covered, the DEs were asked for their belief about how typical
their responses might be of others in their speciaity and of how they might
ccpect responses from individuals in other specialties to differ. We adopted
tnis tactic in recognition that although our appraach to selecting and
interviewing DEs could obtain candid and detailed data, these data might bhe «’
limited generality. By asking explicitly about generality we hoped to obtain
some qualitative characterization that would be of value for preliminary
system design of an IKAS intended for a broader user population or other ta
domains. In any case, the current posting of these Dfs to R&D and training
billets suggests that they are representative of the individuals who would be

prime candidates for the role of user of an IKAS. Therefore, it s reasonable

to assume that the DES' remarks represent the expected norm for other,
notential users in their job specialty, although the generality of their
remarks to other task domains and domain experts may be more questionahle.

PUPRVIEW RECUE T SYSTEM BUTEDERS.,

fn o the feasibility of automating knowledge acquisition. FEvery system builder
wo spoke with agreed with our analysis that replacing the ¥E with a generic
vnowledge acquisition system is far beyond the state-of-the-art. Their
redsans included those we have stated previously:

66

NAVTRAEQUIPCEN 82-C-0151-1

a. The extensive knowledge and interpretive skill required
initially to communicate with DEs and to organize interdactions
effectively

b. The dependence of knowledge acquisition on representation
formalisms used in the host system

The dependence of choice of formalisms on domain features and on
specrtic capabilities to be realized by the knowledge-based system,
\ neitner of which is known initiaily. ([

The specific froatures of the interaction between the KE and JE that were
perceived as difficult to automate inclured:

a, The KE's role as "filterar and .iructurer", not just a "bridge"
for (ransferrving the DEs descrintions

b. Determination of tne consensus within the dar:in for a specific
It ' knowledge N

c. Tre KE's use of evolving semantic and pragmatic knowledge to
control the topics and granularity of interactions.

The 1a<t of these features hears on the issues of system initiagtive and
flexinility in user interface design. It questions whether a system that
takas active initiative in a knowledge acquisition system can ask the "right"
questions--those effective for obtaining knowledge while motivating the DE--
using dialog management rules based only on the syntax of knowledge
formalisms.

There were va: ying degrees of concurrence that an automated knowledge
qcquisition system generic to a class of tasks is feasible at this time. This
concent was perceived as embodying a moderate level of risk, but one
appropriate © v a research effort. That is, even if the effort failed the
process woti'd nave provided valuable knowledge to the community of systen
huilders, One of the respondents felt that the major problem would involve
operationalizing the notion of a class of tasks for use by an automated
knowledae aciisition system. He wondered whether the requisite class-generic

knowledge could be derived from one exemplar of the class or, if not, how many
exemplar, st be studied., Another concern involved the uncertain difficulty
bouning that knowledge as a KE does in dialogue management. Respondents who

had developed a "generic" instructional system {CMS--see Alternative 3,
Section IV believed that that system instantiated the concept of a class of
tasks., They believed that the difficult problem in implementing a knowledge
icaquisition system for such a system 1ies mainly in creating a user interface
accessible to D s,

Gn DE knowledge. Although it was no* inciuded among topics to be discussed
with the system builders, the question of the nature of DEs' knowledge and its
implications for our IKAS concept emerged as a serious issue. One aspect of
that issue is tho lack of consensus in expert task knowledge across DEs. The
respondents at NPRDC who had work 1 closely with Mavy DEs to build prototype

training systems for several tasks (TAO threat classification, EW signal

b L i) 4

67

classification,

even I the aonenve
twO caperlo oy g for
to the tast. dhese
of gquod ¢ritaore
boilders ovae ! o

cons ideraidtls 1 toergl !l ion

o

G
i

comnetonce el For g

well-tnowr o o0 on

CONSeNSUS Ma 0 rants

propulsion Gr rddar oper2t.on
Wyt a

NOROT progect o

propaesion plant oo

The rosgpeent e

oy i
N RN o IRATCIN

qysTen

Sase toon el

inebiectlive g i

SV ST ES W o
L‘-,mﬂ date oo)
ethods Get e Saperior

an opiaion that Hoaoy

porformnance wen -0
!

suqaested that wa''e

Misht comit wien po
abwut the tyiag
buas™j ar Lane

errars.

0N MAging Sycie s o ;
LUTHA S TOWArT SAhNGer oo v

9—‘<1‘1T“~ .‘,,n ;hv; B
the oxistence ot
would he qurs
Hiractly.
Currentiy
arbiterad
knowted TR e
not e -

s

Automation wen o Dok

The o apeadents gl g nymher of opinions about

N “_‘,,1'_‘,("1) ot he

I(‘"'~

NAV A& b BN 82-0 0101

GAVIGelt ot enphiasi
knowlodo e and higndevel approzch vo their

viciations In T
oAt e
VaAriaAtiuns
~formanes oval

Tooare abic g deseribe

few OFc witnin 4 spacralfy wile somo Zowputin.

pontote fistify 3

st that DEo viry seoanificantly 1 thedr
tasks . Sucn o hitrerences can oxrnT
periarnance .
cneoand i eeent ppe oaches
texpert modedt and

¢otasks, Tar systen

roeved of tash thiat 13
.

tnod Y RnRCw e

rery

g tanse

I

ORI L ST DO

Ko [T
tr Dks, caLdncation, ot danovatiog Yo

Kow g er g reeri g regu red tor the

dqefins 4

5 . Oneopanpendent suyggestod that
ot Tor Mo eratoe fasv)t osuen Gt an

i woment was based on knewledge of an
edge-nascd training <gouen for cteam

-

Jr o gorked with 00 n atan radticaran trer Tew,
e S e FFentivee ingira Tion uf o tneir
Senrneeq 300 DR have Tiorgoioon what 1L s
yEoan RS Fratotyne

from 075 have hern
trem, e these
vertise) they wer?
e Lhat the training
Vocespondents offered
suoofoan (AL F
aines 2ryrors.
few Loons 0Ff arrdrs @ trainee
5 oxnowledge
s' "ronceptual
ive Jor eliminating

§

;
f
P ey

v eredura, the, o 0t ddve 7
Lne erroe ' o

o {i.e., the
fnTervent (nns

o
ot
ey
o
s
ho)
or 0
T

1nat are

N Toe ot gt e peroeive a range of
Ok g, o the e iy or
vackgrogn

avston with whish e cn 4 interact

YW,

pheitus o et e rartie Tt
Lo et N ¢ T Sy
Wit Pt WO : ‘ YL Mana!
AT S I SR TRV E BRSSP N ERE Pk e e
oy . AR ot fan oot PRI Lo bed oy
T sl '.“(fj]

2fiore
carricytum design and instructional

These

ohoas

iaterface design,
5 to build systems for v=e by Bis on tasks
system management. Again, the NEs

participating in *hese efforts had good skills for nan-compu.ov professionals,

were volunteo

JAS we Hha?
consonais,

1 nence presumably motivated.

THius, the respondents’

Vodr i ouss, the Dhs agreed Sotaily with tnis assessment of ther-

NAVTRAEQUIPCEN 82-C-0151-1

opinions are based on a “"best-case" appraisal of their experience. However,
they also indicated how they expect the interface would have to differ for
less experienced, but equally motivated, users of a system. Their suggestions
are consonant with the conventional wisdom about interface design. In
addition, a few specific suggestions oriented to the IKAS concept were
proposed.

The inputs concerning interface design include those offered by the two
officers at FCT" who were developing an cperational curriculum entry system
for NTDS triiring materials. Their users were untrained enlisted personnel
and their ideas about interfaces were oriented toward state-of-the-art
techniques for supporting such users.

The respondents at HPRDC have found that the skilled and motivated DEs
who they have worked with have learned without difficulty to access systems
through the same user interfaces ised by the system builders themselves., This
includes learning operating cystem commands to invoke the application
programs, interacting with application programs that require user initiative,
and using poorly documented and infiexible pragrams {typical characteristics
of incomplete research prototypes}. One comment about the experience of a DF
using CMS is revealing, however. The DE iearned to use the system, but had
difficulty in accomplishing his objective of constructing a data base for a
new application of the system. This emphasizes the distinction between how
the mechanical aspects of an interface influence accessibility and how they
influence the effectiveness of access. In the latter case, the user interface
can be more or less effective at supporting the user's conceptual problem
solving. Simitarly, civilian system builders also indicated that since
encoding knewledge into a system is difficult even for a X, a1 major problem
for automated knowledge acquisiticn is providing conceptual support, not the
mecnanics of system access.

Several comments were made about features of the user interface design
that would in neneral he associated with the implementation of conceptual
sunaort. Ine cespondent suggested that MEe oare both oore effective and
comfortabie with the elicitation of procedural knowledge while solving actis)
problems. Another respondent suggested two approaches. One was to support
specification of new knowledge (new inputs) by indicating how it is aifferent
from existing, analogous knowledqge, instead o7 by composition of primitives
from scratch. The second was to support completion of 3 knowledge bhase by
generating structural (syntactic) variations automatically for the user to
filter, instead of by relying on the user to remember or formulate the
variations on his own initfjative. The respondents did not identify these
features with the need for any particular characteristics of the physical
interface.

With respect to the question of user interface requirements for Dis with
less skill, experience, and motivation, the respondents' replies were quite
enerdal. One of then believed that for such users, the interface should take
naximal initiative. She held that the need for structure cutweighed *he
possible adverse implications for flexibility, even it the resulting
interaction was 50 rigid and pedantic as to offend some users. Another
respondent pointed out that interfaces requiring typing severely reduce the
effectiveness for users with less experience. His comment seemed to suggest
that linquistic organization of interaction, as well as the input mode and

69

NAVTRAEQUIPCEN 82-C-0161-1

medium, was less effective than the alternatives for such users.

The FCTL respondents reported positive results ror a system (LTRAN,
"lLesson TRAMsTator”) used by inexperienced users. The features of the [Tpru
interface include maximal use of menus responded to by function keys, sveblia’
visual organization of the interaction, o pointing device for graphice
interaction, "intelligent"” on-line "nels” facilities, and a user-invoked
"undo” function {or correcting mistakes. The spatial-visual organization 15
enabled by the nature of the task-~ the construction of training lessons for
delivery on the NTDS graphic display. The user of L TRAN continually sees the
lesson as it will appear. The FCTC respondents feel strongly that the user
interface features in LTRAN are important for supporting inexperienced users
of other systems as weli. In particular, the use of graphics displays 3and
interactions increases access:bility. However, they also indicated that
spatial-visual organization wouid probably be less effective for tasks in
which there is no existing, natural use of graphics. They beiieved thai
requirements to learn an artificial visual wodel could increase the difficulty
of using a system.

To summarize our discussions with system buiiders, we found:

a. They believe that any effort to automate knowledge acquisition
must 1imit the intendnd yenerality of the system,

5. They emphasize the difficuities in providing conceptual support
as the rmajor wroblem in implementing a limited knowledge acquisition
system for direct use hy DEs.

t. They deemphasize the importance of the physical features of the
interface to be used by OFs, because they belicve thal in genera) there
are some DES in any speciaity with the skills and experience to use any
functionally complete interyace.

INTERVIEW RESUNTS: DOMAIN EXPERTS.

On computing background and atticudes. Ali of the DI respondents had a

work ing Wnowledge of interactive computer systems, a realisric attitude =hogt
the capab lities and uscs of computers, and o Tavareble attitude ahout hr
introduction of now computer technology into triining and operational
envoromment s for their speciaity. One of the 770 respandents had had 1ooma’
coursewors an ocompaters at the Naval Academy and in an MBA program at a
civilian university. The work at the Naval Academy included BASIC programming
and use of a UAT system in a ship design class. He had not done any
programning Lince leaving the Academy some 4 years carlier, however. Since
that time, he had usced 1 variety of embedded computer systems within the NTUS
and other tactical warfare systems. At FCTC, he had 2 major responsibility
for using NAVIASG, 3 microcomputer-based trainina system, in a supervisory
role. He defired new exercise scenavios, played the role of game directar in
exercises, and managed trainee data in the system.

The other, more senios, 'Ci0 respondent had no forsial exposure to
computing. However, his position required him to use various computer-based

NAVTRAEQUIPCEN 82-C-0151-1

training and administrative systems at FCTC. He also had experience using
personal computer systems outside his work.

The NPRDC respondents had considerable computer skill. One had an
extensive formal background from work in Masters and Ph.D. programs at the
Naval Postgraduate School, which included 4 ycars of prugranming
simulations in FORTRAM. At NPRDC, he was the DE member of a team developing
tactics training systems. Part of that work included an independent research
effort in which he was developing on a micro-computer in PASCAL an
interactive, Jgraphics-based, training simulator. In addition, he accessed
NPRDC's VAX/UNIX timesharing system on a daily basis for computer mail and
text-processing activities.

The second NPROC respondent was a senior non-commissioned officer with
self-trained computing skills. He had taken a COBOL programming course and
had taught himself PASCAL programming at NPROC. He reported that he was
motivated to find ways to develop and use his skills in his job at NPRDC, even
though this was not strictly required. He regularly used computers to
interact with programmers implementing systems in groups in which he
narticipated. He also was the DE who had worked on adding a new database for {;
his specialty (sonar interpretation) to an existing training system prototype ‘
(CMS). Thus, he had actually been engaged in an “"automated knowledge
acquisition” effort.

With regard to the generality of experience and attitudes we encountered {
in our sample of DEs, the respondents at NPROC recognized their relative depth
of experience. The tactics expert believed his range of experience,

‘ particularly in programming, is uncommon for other officers in his specialty
and exceeded only by officers whose specialty is computer systems. He noted
that the other DE's knowledge and motivation was particularly rare for non-
commissioned afficers with real expertise in some operational specialty. That
JDE concurred by pointing out that other noncoms at NPRDC, including those in
his specialty, had a very different approach to their involvement in projects J
developina computer-based systems.

! The Nis at FCTC sen their ecxperience and attitudes as more common, though

far from universal. They stated that among Navy officers in all specialties, !
one can expect a functional computer background from all who attended the
Maval Academy, some of those who attended the Naval Postgraduate School, many F

who take courses at colleges and universities on their own initiative, and
those whose specialty includes operational equipment that contain computers.
dith regard to the last category, one of the respondents noted however that
the functionality of most embedded systems is less complex than that of the
typical stand-alone word processor. One of their comments was that FCTC may
oe somewhat unusual in the extent of its use of computers. This may m
contribute to initiative of Navy personnel in developing computer skills.

| They were unsure, for example, whether the widespread ownership and use of f
’ home computers--five or six of the staff in the TAQ training group are in this)
category--is typical of other Navy porsonnel. 0Nne factor they cited that
affects such initiative is the amount of time required by assigned duties. It
seems reasonable that the opportunities and motivation for self-improvement of
compiter skills generalize to other Navy training and development centers
where DEs cone into contact frequently with internal and contractor computer
projects. DFs assigned to sea duties and to shore-based operations facilities

NAVIRALQUIPCEN 87-C-0141-1

are less likely to have bath the time and the stimulation to extend their
experience with computers. In any case, the FCIC Dfs believed it would be
rare to find a current officer who would resist tearning to use a new system
if he were told its advantages. They suggestad that resistance to computer
technnlogy occurs only a. senior management levels. In attitudes toward
computers then, the Navy appears to be at ieast as, if not more, progressive
than aother crgdrizations.

Nn the features of user interfaces. The Dts had 5 variety of opinions ahout
user interfies, ” Many of these were vague and generasl: others were specific
and described in terms of particular systems they had used. As we noted, we
used our perceptions of tnese opiaians to classify the set of "1ssues” about
interfaces we described coriior in tois section. Somewhat surprisingly, the
DEs had more sophisticated, detailed nerspectives on the physical features of
user interfaces rhan tie system huilders we interviewed. Some of their
comnents at 1east nartiaily contraaict those given by system huitders. One
oroblem the DUs congiwrently ndaa duriag our discussicn was keeping separate
the criteria thoy would appiy to systems used by others (e.q., trainees using

~2ining systens) “roin thase they would apply to o system they would use
{e.g9., the instructor's interface to a trainicg system or the interface to an
IKAS). Our discussion wiil pe Timited to presenting comments that bear on the
latter type of user.

Much of the discussion with the FCTC respondents addressed the NAVTAG
system's interface, with wnich both they and the interviewer were familiar.
NAVTAG makes heavy use of sequential and nested menus. The respondents noted
that while this feature was useful very carly in one's use of the system, it
guickly becawe tedicus for both trainees and 'nstructors. One aspect of the
problem was responsiveress: the hardware/software was slow in displaying each
new nenu.’ Comments abour other systems ndicated that responsiveness was a
major issue or one of the OYs. Hoe suqqesticd that while some users could
tolerate poor responsiveness, ntper users would elect 1ot tu accept and use a
systert with poor response Lime.

A second peonteen with NAVIAS's yte of conus was the inability to
mmedrately Laee o particuiar action when they knew exactly what they wanted
to do. That is, rne system ic inflexible, They <aid they would prefer a
command languace irter face) with snme minima: promoting, that would give ‘hem
more initiative. v oaddition, since they believe that DEs have minimal typing
il the com o uot language should be terse and the interface should be
flexible i+ 1ty resprnse to spelling or format errors. One respondent
suggested tha*t the weny-based, scripted elicitation of responses under system
control was nat objectionablie if the task was to enter a number of connected
inputs {as in filling out a template), but that the user needed more control
when chuosing the topic of interaction and when modifying a single feature
specified in a prior interaction.

Both D' s agreee !t snat g rich, quasi-"nglish comand lanquage was

Mhe nest version of NAVIAL, wnder devolopnent on newer, more powertful
hardware, could imnrave responsivenes<s,

NAVTRAEQUIPCEN 82-C-0151-1

unnecessary for Navy personnel. They routinely use arbitrary, schematic
information-coding formats with rigid syntax in a variety of communication
contexts--they even have to write computer-parsable messages. They do not
object to learning such languages and favor them for their efficiency and
minimal typing requirements over more verbose forms of expression.

Other responses about the use of menus bear upon the issue of context and
feedback. One comment addressed both the preservation and display of context.
The DE criticized the fact that the menus occupied so much of the display area
and that each menu erased the preceding interaction. He thought it important
for the user to be able to review and perhaps change responses in prior
interactions. Another comment cited as a bad feature "being stuck in a loop,"
a situation in which the system rejects a response but neither tells the user
what is wrong with it nor allows him to escape to on-line help or
documentation without destroying the context of his work.

The FCTC DEs were receptive but not enthusiastic about the use of
graphics in interfaces. They saw no particular advantage to qgraphics,
especially the use of jcons, if the images were not already familiar to the
user. One DE thouught such use of graphics is eye-catching but probably no
more effective than alternative approaches requiring less expensive hardware
and software. In addition, use of graphics does not preclude errors since the
user must still remember sequences of actions. The other DE was also
concerned about cost, suggesting that graphics are probably not cost-effective
in infrequently used systems. Both DEs became more receptive to possible uses
of graphics when the interviewer presented a hypothetical task of specifying a
decision network for sequencing training exercises and illustrated (using a
sencil-and-paper protocol) how graphics 1/0 techniques might be used. They
thought the graphic display of the network as a graph was conceptually useful.
However, they did not feel that graphic input (via a mouse or other pointing
device) would nevessarily be better for the user than the use of menus,
especially if the menus and graph display could be simul taneously displayed.
The medium and organization of interaction was important to them only to the
extent that it could improve the amount of context available to the user.

The NPRDC DEs had a different perspective on user interface issues.
Their comments tended to reflect the current common wisdom about interfaces.
Thoy alse contradicted the system builders, who had deemphasized the need for
"user-friendly”" interfaces for experienced and motivated DEs.

The NPRDC DFs believed that while they had the skills to use arbitrarily
complex interfaces, a qood system design would not require extensive learning.
The Df who had worked on developing a databasc for CMS stated that he should
not have had to learn the operating system interface and PASCAL language to
attempt that task. He believed that characteristics of the physical interface
increased the difficulty of the conceptual part of his task. Beyond the
physical interface's shortcomings, he suggested that the interface should have
provided conceptual support for understanding the data base structure and its
relationship to the instructional gumes., He felt that an application <ystem
for DE-instructor users should have the same interface features usually found
in training systems themselves: turn-key access to the application, huilt in
training, initial system guidance and prompts, function keys, and descriptions
and manipuTations oriented toward the organization and constructs with which
the user conceives his task. Several other comments reflected his strong

Fad

NAVIRAEQUIPCEN 82-C-0151-1

belief in tailoring system capabilities for easc of use. He suggested that

external documentation must avoid “burying" critical dctails about critical

basic actions, that system designs should trade capabilities off to improve

learnability and effectiveness, and that the neec for multi-media and multi-
mode user interfaces increases as the capabilitics of the system become more
varied.

This DE also provided the only comments abaut g0 shics from the NPRDC
respondents. He beljeved graphics are only impo: tant when they reflect solid
analogies witn the user's existing unde~standing nt the task. With respect to
the interviewer's pr-eserntation of the hypothetica: decision network
elaboration task, he commented thdt direct graphics aanipulation via a
pointing device would He the best input mode for the tusk because of the
ability to manipulate structures directly and ability to immediately view
results of the manipialation.

The other DL nad cimilar v ows. He was familiar with state-of-the-art
"work stations” with significart buiit-in user interface facilities. He
believed that hardware has been the main limiting factor on interface quality
and that work station technu:ogy was overcoming these lTimits. He cited, for
example, the original NAVTAG's inability to simultaneously disp a
geographical plot and tabular status display as & hardware limic...ion on the
interface that adversely affected the system's usability. He stated that ease
of initial learning, either off-line or by experimenting with the system was
critical--he thought one hour of introduction pricr ©to serious use was a safe
maximum. He felt two design features would insure the utility of these
learning sessions: {1} the use of system initiative and closed input modes
(e.q., prompting, menus, function keys, and puinting aevices), and (2)
transparency (matching the structure and granularity of interface interactions
to the user's concaption of the task).

On DE knowledge and 1KAS feasihility. We obta ed only limited data from the
four DFs “that Dear on TKAT feasibiTity. The +gle at o OF in building a
knowledge-based systen was untamiliar to the t 070 i<, <0 they were able to
contribute 1. .le to this analysis. The HPRDU s were familiar with that
role and had somewhat more to contribute. The Jbs emphasized the Tack of
consensus about competent performance in their wpeciilties (tactics and
acoustic analysis). Une dPRIC DE desuribed the vaiadbility in experts'
tactical decisionta: i, aporoaches and tolerance for that variability as the
resuit, at least in part, of the tasks characteristics: uncertain data, a
large search space for problem solving, and the heuristic nature of available
procedures. Since ng one is ever always right, alternative approaches are
acceptable. (ne of the FCTC Uts attributed expert performance variability to
the competitive nature of the tactics task which introduces non-determinism
and prevents a straightforward assessment of actinn consequences.

The secand NPRDUC P comaented on the tactt nature of expert <nowledge in
hi, specialty. iy experdieace is that experts' rationales for their behavio
do nat coincide with the bhiobavior they exhibit. 7o induce experts to give
complete, consistent vationales, it is necessary to confront them with
contradictions hotween what they do and wnat they say they ao.

The DEs confirmed the opinion of the system buiiders that they do not
have a qood understanding of why trainees make specific errors of performance.

e eranalB | AT i s ST I v P—

e

NAVTRAEQUIPCEN 82-C-0151-1

This is in part due to their poor understanding and consensus about
competence. The DEs at both FCTC and NPRDC asserted that in actual training,
verbal interaction is ordinarily required for an instructor to form a
hypothesis about a trainee's underlying knowledge deficiency. One NPRDC OF
believes that most fleet-based DEs do not have the verbal skills for such
interactions and, further, that rank differences inhibit fruitful interaction
during training. He did suggest that performance diagnosis from behavioral

h data might be easier in other speciaities where there was less dependence on
uncertain situational data and on data interpretations in determining which
procedures to execute.

The other NPRDC DE commented that most DEs have little opportunity to
develop detailed knowledge about trainee errors because training includes
little "over the shoulder” monitoring. One of the FCTC DEs did believe he had
developed diagnostic knowledge for trainee errcrs from his experiences at that
facility. However, he acknowledged that the nature of the knowledge was such
that performance data from many exercises would be necessary to converge on
diagnostic hypotheses about a trainee's performance.

Only the DEs at NPROC offered comments on our concept for an IKAS. One
noted that our concept of a class generic IKAS was consistent with his
experience in sonar interpretation, where there are about five different
specialties that all do essentially the same problem-solving task using
different equipment and having different coordination responsibilities. The
other thought that automated knowledge acquisition was feasible, but that any
effort to develop training systems would probably be served best by a
combination of marual and automated methods. He also thought that an
incremental approach to developing the technology would be critical for its
i success.

One mitigating concern was that if development of knowledge-based systems
became more common, there might be a dearth of DEs with appropriate background
and motivation to assist development efforts. In particular, unmotivated or

¥ inexperienced DEs might fail to contribute to the development of a KBIS

; regardless of whether knowledge acquisition was manual or automatic or of what
; user interface the automated system had. The other DE shared this concern,

! stating that common management practice of assigning personnel rather than

; soliciting voluntcers could negate the effectiveness of any large-scale
programs of knowledge-based systems development. He believed that suitablie
DEs would be indifferent to whether they worked with a human KE or an
automated system on o system-building project. That is, that they would find
working with an intelligent automated system acceptable.

DISCUSSION AND RECOMMENDATIONS

DISCUSSION OF INTERVIEW RESULTS. The limited and informal survey of system
builders and DEs can only be generalized with care. All respondents were
members of two small Navy communiti~s (other than the Stanford system builders
with whom we interacted informally and the Navy scientist we interviewed by
telephone). These communities are geographically proximal and frequently
interact with one another. The DEs represented only two job specialties that
are somewhat related in function. On the other hand, they represent a rangc
of roles for individuals with those specialties and they are the types of

NAVTRAEQUIPCEN 82-C-0151-1

individuals who would most likely participate in R&D on knowledge acquisition.
Further, the DEs and system builders had interacted on some projects and had
shared other cxperiences involving the dev2lopment and use of particular
computer systems. Thus, the comments we received reflect perspectives of
system builders and DEs who might be using an IKAS toyether today if one
existed.

The responses that strike us as most important are those indicating that
the effectiveness of autotated knowledge acquisition Jdepends first on
selecting ap,ropriate NE users, regardless of the system’s user interface.
Appropriateness seems to refer to the DEsS motivation and basic understanding
of computers. Since we were told that most DEs of officer rank have the
Tatter, it seems thail motivation is the key factor. Py itself, a user
interface--no matter how user-friendiy--will not guarantee that an arbitrary
DE will become a productive member of a knowledge-based system development
effort.

Beyond this Juint, we observed considerable divergence of opinion. The
system builders believe that no particular physical user interface
characteristics are required for a motivated DL collaborating in a development
effort. Their experience indicates that such DEs are willing and able to
learn to use the same physical user interfaces they themselves use. They do
believe that any system must provide conceptual support for the user. Thus,
the "what" of human-computer interaction is important, but the "how" is not.
The DFEs expect such conceptual support, but they also want a friendly physical
interface to the system. Although they can and do learn to use systems with
jidiosvncratic and complicated user interfaces, they find this to he an
imposition an’ an impediment to achieving their goals in using those systems.

The DIy expressed no consensus 6o what features they desire in a user-
friendly interface. Like the system builders, they recognized that tradeoffs
exist and that interface design depends on objectives and functional
capabilities of the system. The Diis were largely noncommittal ahout specific
media or organizatione of the interaction. They wero more concerned with
issues of conceptualization rather than how these should be resalved at the
level of input and outnut implementation. For example, the DEs indicated that
they thougnt graphics 1/0 methods would be of real value only when the user
¢Vready had a spatial-visual framework for conceiving the problem domain.
There was only one consistent media-related constiraint mentioned: that minimal
typing should he required to achieve desired functionality.

The fignher-order issues the DEs commented on were:

3. Responsiveness. Poor responsiveness may inhihit effectiveness
Soroat 1east some users. {t was not clear from the comments whether th
main problem would be 1n impeding the user's desired rate of interaction
or in confusing ur ircitating him by slow or variable fredback to his
fnputs.

ho Flexibhility., Alteragtive or rich modes ot input are unnecessary
herause Wavy personnel are accustomed to schematic fixed artificial
Tanquages. "lexibility in handling errors is desirablo.

NAVTRAEQUIPCEN 82-C-0161-1

c. Context. Preservation and display of prior interactions is
useful, W™aintenance of context across errors and user exercise of
initiative is critical. There were no comments regarding the degree of
context preservation desirable between work sessions.

d. User Control. The two groups of DEs had somewhat divergent
views aboul user control. The difference may reflect whether the
respondents were focusing on introductory or repeated use of a system.
The HPRDC DEs favored considerable system control of interactions. They
seemed to be considering initial system accessibility and conceptual
support for a user. The FCTC DEs favored global user control of
interactions with system control exercised locally within particular
types of interactions. They seemed to be considering long-term use of
systems and their opinions may have been influenced by experience with
systems having poor implementations of system control. Both groups
believed that user control to escape a system-driven interaction is
necessary. Much of their concern with context management centered on
supporting this type of user control.

e. User Knowledge Requirements. The DEs thought that a
knowledgeabTe user oug f"%o be abTe to use a new system effectively in
approximately one hour. To do so, they believed that off-1line
documentation must be organized effectively and that on-line help should
always be availahle. Their strongest comments regarding user knowledge
requirements concerned transparency. They believed that transparency is
instrumental to reducing the amount of new knowledge required to access a
system. We see this as a further statement about the need for conceptual
support if a system is to be used effectively.

Most of the comments collected on the feasibility of an IKAS came from
the system builders. They all believed that a generic IKAS for knowledge-
basad systems is not currently possible nor may it ever be. Their beliefs,
Vike ours, derived from the perceived dependencies among system objectives and
capabilities, required knowledge, representation formalisms, and knowledge
elicitation methods. Some system builders thought that IKAS development with
more limited applicability was, however, a worthwhile goal. Such research
could aid future syvstem building and maintenance efforts. More fundamentally,
it could contribute new knowledge to the field of knowledge-based systems
technoloqy.

Comments from most system builders and DPs supported the concept of a
class-generic 1KAS as o feasible focus for rescarch on techniques to support
knowledge acquisition. They agreed that the concept of classes of tasks was
at least intuitively viable, The system builders believed that there are
difficult problems to be solved if the IKAS system is to use class-generic
knowledge to support its interactions, but that solutions to these problems
are possihle given the current state-of-the-art.

The grratest concern about the IKAS concept involved the question of
whether DEs have and can articulate the types of knowledge an IKAS would be
designed to obtain. There was consensus among the system builders and Df-
*hat, at least in the specialties with which they are familiar, Dfs do not
have qood causal, diagnostic knowledge associating performance errors with
knowledqge deficiencies. The system builders also questioned DE abilities for

NAVTHATOIIDIEN Ry o ok T

formulating instructional interventions seqc:t-ve 1o the prelivadual nee o g
trainees. The Dfs were confident, howevey | Lnat ney ano o beers oo
knowledge about some errcors that might be observeo auring pertormance an
explanations for those errors “n terms of unter vagtyred,

RECOMMENDATIONS FOR JKAS DESIGN. As we have stoter, the ab iy Lo Spien
the design of an IKAS, varticuldarly its user interiace, depends on the
capabilities and architecture of the hosl knowleige-lLased instructicnal sy . tem
to be served by the IKAS. The recommendations we car offer o Poanen o0 o :
interactions with OEs and csystem builders are chus Timiten 0w o e
should be considered when the other requirements and constrarnis for !
developing a particular desigr are obtained.

a. Emphasize conceptual support and transparency. The IKAS shouiu ;
hep the DE-user recognize or Tearn ~hout Tts relationship s the nost
instructional system, its mode” ot the daar's tuash o0 dnteractiog woth
it, and its intended model for describing the knowledge about the user's
area of expertise. Its interactions shoul<« conform to the Tevei of
abstraction defined by these franewor: o and mcdeis ang hide (Guer-Teve
implementation details from the user. &4 pacticuuerly impe-tant form of
concentual support is to enable the user to anticipale how knuwiedge he
pecifies to the [KAS will manifest itse'f in the hout systen's behavior.

\
]

b. Design the global knowledge aaq%jsition strategy to be moduiar
, S R N ACHL LIl e At L AR S A A A e
with respect to achieving acqusition of different f,pes of knowledge.
e e S g e g m o R AR S A
T some cpecialties or for an DE WIthTn o ghien <eecialty, ertain fypee
cf knowledge may not be known to the user {e.¢., rules Por fausal
diaqnosis of performance error<i. The system shouid be ible to obtain
otner types of knowledge from the DE and lcave the defirition of
knowledge the DF canpot articulate to other methods.

——

c. Prgvide on-Yine heln/documenta e and intelligent
N L 2 Lo Lt
context managenent. hese interface seel: most ympartant Tor
insuring accessibility and effective use by relatively computer-
seinisticated DEs, such as those interviewed.

o e feor comitinents on other
rnererental dedTga and develcomer U appran b
indicatod a areforence and need for o a Ful Ty Lo Liriendly interface,
they Lid nar cftee an antegrated picture of W 1r Ladl wouls 0 Since
they have feoan e gbedt thele ability to e cor s Daterfac L they
dould be able te use most systems as long as liey deliver some
conceptua’ supnoet. We believe that the hest approach to developing the :
intorface A-cgn is thraugh managed refinement of 3 flexibio prototype, '
hased gr intargction with Ds using that prototype. This approach allows
rooempiciceity based resolution of the tradecffs betwoen feoatliy-es and
gotem resaon tyene s, Tre approach ultinatoly voquives poatotyne 1
toyalopment o5 ing nardware ard software with potontia’ mults-medie
capahititrea “o support dlternative input modes and modes of araanization
for interactions--for example, high-performance., ingic-user vork s
stations with high-resnlation qraphics and multipie input media,

However, initial work on conceptual support and on higher-level interface

Wb e o e ne

O T YT

NAVTRAEQUIPCEN 82-C-0151-1

functionality could proceed with less extensive hardware-software
resources using a more modest and limited physical interface.

79

NAVIRAEQUIPCEN 82-0-0161-1

SECTION VI

THE 1KAS ARCHITECTURL

This section presents @ high-level architacture {or implemcenting che IKAS
concept irtroduced in Sextion V. Tne archivecture wes aesigned to surnort
the mos*t useful featurss developed in pricr effort: (o support know' dqe
acquisition {see Section I11) and to satisfy the rogquirements derived from our
discussions iih Navy personie ! (see Section V.

The stracture and level orf detail of tne wrcrotecture is compatible wilh
all three daiternatives for 1A duevelopment Jdescribed in Section TV, In fact,
it could serve 45 1 framewors “Go any stahie, cliss-grueric knowledge
acquisition system, instract,onet or otherwise, Anv iere detailed
specification of the arcnitecture would requive Coanitionts to snecific
ropresentation fornal isris, ases infterfacs nechenisis, and other nechanisms
depeadeat on the aemain cnardacreristics and capabilities of the host
knowledge-based svstem it would serve,

Figure Shows tne majour functiona? medgios a7 ths design and general
descriptions of the information thoy exchanygo, we fir<t discuss each module' s
function "o othe aecailedtygre and toen dise s the desigr constraints the
architecture anity to satisfy, For each I the Lhree goor-accessible modules
Pthe FLTOLTOR, “he T UTOE, and thn y we proavide examples of the
functions t,r the three TKAS concepts desoribed in Section IV.

Llooe
g

KRS MGRILES

FLICDTWRL The ENICTTOR geonerates suggestiois ond reguests for types af
knowledge to be 2licized from the user when the system s controiling trne
interaction. Tt doen se by aperaticnalizing anoagends created hy the ©0LUERY
converting tre anende specificetions into requests o be <ont tp the user
across the asee interface, and then delivering these requests either hy 1t«
own mecnanicas or those of the JSEROASSISTANT. Agendd specifications woulo
inclade sevorad tynes o activiidies. The FUiCITOP oignt suggest o fogus o
attentron oo v i e dimen s ion of the knowieage hese. Alternatively,
P might reacest un U b inpete eequired foe {2) structurs? comploteaess o
(hY ceaniteny with the wemant o and pragnatic featwres of the doain apd ot
the podor contest o T o (0 100 might also suaqest appropriate times to the
dueroro invoke the PAERUISTT to test the effects of modifications to the
nowled oo oy,

-

T F0 0 0T0 sraula be oable to explain its hehavior to the user uciag o
ritianale created 4long with tne agenda. The wser can ask why the FLICITOR i:
fallnwing tie current tack, and, on the hasis ot tne response, decide whether
browants fo comiay o Utke the initiative fwmselt, "or instance, the 0101702
ay be able to tali the yser Gy is acking for fypes of knowledge in a
particular order because that order proved effective in eliciting knowledas i
ather damains,

Txamnles.

NAVTRAEQUIPCEN 82-C-0151-1

POWLECGE
5ASL

UNDINE
LT URKAGE

- v

ARCHIVA
STORAGE

MANAGER

| N T\ W
i y ;7
‘ AR CHECKER
; ; / K
‘ i n o
9 = 2 qQ r
L 1TO® ELITOR
S

HELP ’

FACILITY

L

ol USER
ASSISTANT

cc

ee ff

99

#LCORLER

EYERCISER

CAT
FACILITY

\\<5

F3 D 4y T v

P = e 4

/ﬁd

Figure ¢. TKAS architecture

[

;‘ NAVTRAEQUIPCEN 82-C-0151-1
}
[

a MANAGER -> [XPRUISER
Pointers to informuation in the knowledge base
b RECORDER -> MANAGER
Information per-inent tu knowledge hase checkpoin.ing]
and arcbioing decisions
c MANAGER -» THECKER
Pointirs £ Tnformation in the knowledge Lase
4 MAKAGER -~ DUANNER
Pointers to information in the knowledge base
2 MAMAGER -» v I01T0R
Pointers o dnformation in the knowledge base
f ARAGE N
Poiatirs oo infgemeticon in the knowlredge base ;
0 FoffiToR -0 W CCRDER
tepr-Syerom intesgltion record 4
n RECORDER -» 7 ANNLY '
Rocards of recent interaction cnntext
i PLANNF# - (L 1C]110R |
£l citatior agenda and rationaile {
i CHEZKER -» ELICITOR
Results of knuwledge check
K CHECKEX -> tDITOR J
Results of knowledge check
1 RECTRDER <> [AERUISER
Prior exercise definitions and results
i
m ELICITOR > [HESHER i
Knowle 1ye-bhase modification to be Jhecked &
3 EDITOR -»> (MECKFQ
Knowledqge- biso madificatinn to he checved LL
! POITOR —» RO RN K
nteracticor rosords
n FYFROISFR -> RECORDFR 7
Fxorcige records
q SLICTITOR -» MANAGER
Request for knowledge base pointer
{hanges to current knowledge base

EQLTOR -> MANAGER
kequest for knowiedge base pointer
Changes to current know'edge hase

Fiqure ¥ Veant.). {VAS ar bitecture

NAVTRAEQUIPCEN 82-C-0151-1

s EDITOR -> ELICITOR
User response to ELICITOR query achieved via EDITOR use

t ELICITOR -> USER ASSISTANT |
Queries to user i

Error information

u FDITOR -> USER ASSISTANT
State information
Frror information

v EXERCISER -> USER ASSISTANT
State information
Exercise results for user
Error information

w USER ASSISTANT -> ELICITOR
User responses to information requests
lJser requests to restore prior state or
modify prior inputs

% USER ASSISTANT -> EDITOR o
User commands
liser requests to restore prior state or
modify prior fnputs

y USER ASSTSTANT -> EXERCISER
User requests to test system performance

z HELP FACILITY ~> USER ASSISTANT ‘
Pointers to on-line documentation

aa HELP FACILITY <> CAI FACILITY
Pointers to on-line documentation

bb HELP FACILITY -> USER WORK STATION
Documentation requested by user

cc USER ASSISTANT -> USER WORK STATION b
Information passed by ELICITOR, EDITOR, EXERCISER
Responses to requests and commands trapped by

HISER ASSISTANT

Ad CAl FACILITY ~> USER WORK STATION
Instructional content

e SR WO

ee USEFR WORK STATION -> HELP FACILITY
Requests to examine system documentation

ft USER WORK STATION -> USER ASSSITANT
Inputs to be passed to FLICITOR, EDITOR, FXERCISER
Commands and responses to HSER ASSTSTANT

Qv acEm e semrmapa

4 USER WORK STATION -> CAT FACILITY
Inputs to instructional interactions

Figure 2 (cont.). IKAS architecture A

NAVTRAFQUIPCEN 82-C-0151-1

a. Alternative 1. The FLICITOR can determine ¢~ suggest whether
the user should Tocus on (1) sequentially describing performance
characteristics, situation characteristics, or mappings of observables to
deviations from the competence wodel, or (2} all of these for successive
segments of the competence model. It can ask about situation :
characteristics when particular performance characteristics have been ;
specified. It can suggest tnat the user invoke the EXLRCISER when an
unfamiliar form of variation from the competence moael has been specified
as an explanation of a set of performance characteristics. !

b. Alternative 2. Tne ELTCITOR can determine or sugqgest whether
elicitation should be organized according to situations or to procedures
and ~ules in the existing opponent simulation. When focusing on a
particular situation, it can ask about whether specific rules and
procedures, applied in "simidar" situatinng, might also be applied in

that situation. 1
To Alternative 3. Twe DUICITOR can determine or suggest whether

Sicitation shoaTd pueaae v laboration of taconomics or the attributes of

thne —oncepts in the taomosics. Tt can ask whetner features associated Al

with 3 concept are also associated with concepts that are "close" in the
tatonomic strncture, It Can suggest that the user invoke the EXERCISER
when a concept with new types of attributes is described.

TOLTGR. The £OITIR allowe the usoer to buile, modify, and inspect the
knowle-ige ba<e under his own initiative. It is also ivailable through the
TLICITOF a5 @ mode for responding to some requests for selection of elements |
in the knowiedge base and for description of modifications to knowledge base
structure.

The EDITOR supports transparent, structure-oriented specification of
attention and modification. That is, the granularity of its commands is
sensistent with the syntax and semantics of the knowledge-base formalisms, not M
the low-level software- and hardware-dependent implementations of those
tonaet iema. The KAS (Reboh, 1981) network editor is a good modei for such
functionsiitv. Additional support for handling syntactically invalid commands
ainplied via open input mode is obtained through the LDITOR's interface with
the 1S ASSISTANT while support for handling semantic and pragmatic errors]
is obtained from the CHECKER, crror checking is performed on each input to
provide the user immediate feedback.

The 31707 1150 must provide contexi display of the local focus of
attention within tne qglobal knowledge base. If the representation formalisms
for a domain class are conducive to graphic display and manipulation, context
displiy might comurisc dynamic "maps” ¢f the knowledge base displayed
concurrently with the local editing window. In addition to context display,
the EDITOR must also enable the user to locate existing knowledge and change
attention by specifying partial descriptions. Other context management
functions, such as maintenance and display of alternative contexts, are
handlird b mechanisms external to the EDITOR.

txamples.

NAVTRAEQUIPCEN 82-C-0151-1

a. Alternative 1. A schema-based editor is possible for
descriptions of performance and situation characteristics embedded within
a network editor if those descriptions are hierarchical. The frames and
schemas are manipulable as slots and values of defined types. The syntax
of each defined type determines the granularity of access to values of
that type. A network, procedure, or rule-based editor would be used for
elaborating deviations of the competence model, depending on how it is
represented.

b. Alternative 2. An editor allowing manipulation of networks,
procedures, and ruTes would be used for elaborating alterna*ives to the
opponent simulation model. A network editor wouid allow manipulations on
nodes {procedure or rule designators) and links {(control paths} to
specify deletion, insertion, and reordering of node invocation. A
procedure editor could be oriented toward modification of defined
procedures rather than composition from scratch. A rule-editor would
allow the user to manipulate the specification and logical composition of
primitive clauses in the condition and action portions of the rules
governing opponent behavior. The syntax of the clauses would be used to
determine the granularity of access to their components (e.g., as members
of tuples in predicate-object-value conditions}.

c. Alternative 3. A network editor would be used to specify
concept and Feature Taxonomies. It could be combined with a schema-based
editor to permit specification of concept attributes and attribute
values. A graphics interface could be used to support the network editor
and would be advantageous for its context display capabilities.

EXERCISER. The EXERCISER gives the user access to the host KBIS. 1Its major
function is to provide conceptual support through feedback about the
relationship between user modifications of the knowledge base and behavior of
the KBIS.

A variety of EXERCISER capabilities might be implemented. Most simply.
the IKAS user may be allowed to access the KBIS through its instructor or
student interfaces to assess system behavior as he changes the knowledge base.
Additional control over configuring the state of the KBIS would allow the ser
to directly configure and test an "interesting” <ituation he wants to examine.
As in some expert consultation systems, the user could draw from a library ot
problem cases or use an editor to alter these cases in order to exercise the
KBTS and obtain summaries of results. In addition, the EXERCISER could be
used to automatically select entries from the library according to a set of
heuristics. These heuristics would seek to thoroughly exercise new or
modified knowledge entered by the user. The requirements for and feasihility
and implementation of these EXERCISER capabilities are a function of the host
system's capabilities and implementation.

f}qupﬂfis.
a. Alternative 1. The EXFRCISER could be used to determine the

range of behaviors classified with a given set of performance
characteristics. After postulating certain errors and circumstances in

NAVTRAEQUIPCEN 82--0151-1

which they should occur, the user could observe performance of the model
on problems for which the anticipated erruors should occur. He could also
test the reliability of performance diagnoses as the knowledge base
grows.

} b. Alternative 2. The user could obcerve peeformance of variants
of the opponent simuTation in different tac-tical situations. He could
also observe the performance of all the variants in a particular
situation. Thus,the EXERCISER zould be used to astermine the range of
behaviors ti: opponent could exnihit and the conditions under which

different behaviors would be invoked by the KBIS.

c. Alternative 3. Tne user couid cohserve use of his defined
concepts in different instructional games. He could otserve the games'
sequential bhehavior for a set ai concepts. In each case, he could B
examine the selection rules used by the games in accessiag the taxonomies '
and concept definiticns.

RECORDER. The RUTCORDTK acis as a common store of recent context about
activities in the tLICITOR, «UITOHOR, and ¢XUALISER. {nys information supports {
the PLANNER in its maintenence of an agends “or interictinn topics. 1t

provides that same context to the TXERCISER to support any bookkeeping or
other ©XFRCISTR functions that depend on knowledge of interaction history.
The nature of the stored “context” s dependent on the functions of the
CLICITOR, EDITOR, and EXERCISER. These will vary from application to

application. Generally, “"context" refers to the focus of attention within the t
knowledge base, what e€fects were achieved at that focus, and how they were
achieved.

The RECORDER also provides results of EXERCISER invocations to the
MANAGER. These results are used by the MANAGER to make decisions about
archiving of the knowledge base in phycical storage.

PLANNER. The PLANNER generates the agenda used by the ELICITOR. It uses
heuristic rules that operate on the knowledge base and the information
maintained by the RECTRIER to produce a s2t of propused topics and user
queries to stimuiate the growth of the knowledse base. The PLANNER's rules
emhody knowledge facquired by the KEs who engineer the first KbiS for the
domain class) about the syntactic structure ond class-generic semantic and
pragmatic knowleddqe of the domain, This knowledge can be used to define
dialogue Lhenes and transitions that are sensihle in terms of their conceptual
rotationships and importance. They also embody knowledge about more general
aspects of dialogue management--for example, the need to vary content and
style to avnid user bhoredom.

Since the IKAS desiqgn is oriented toward a mixed-initiative approach to
control, the PLANNIR needs to plan an agenda ontv for a short time horizon.

5 items from the agoenda are exenuted, the PLANNFR is invoked whenever the
user has prohblems fulfilling the ELICITOR's requests or assumes the fnitiative
by invoking the EDITOR. At that point the PLANNER replans the agenda. 1f the
user should complete the local agenda, then the FUANNER is invoked to plan for
another short time horizon. This dynamic planning and replanning for a short
time horizon insures that the FLICITOR's behavinr is always sensitive to

NAVTRAEQUIPCEN 82-C-0151-1

recent events. In particular the ELICITOR should follow up on episodes of
user initiative.

The PLANNER saves a rationale for the agenda. The rationale describes
for each agenda element which rule or rules caused it to be included and what
features of the knowledge base or context caused those rules to be applicable.
This is similar to the rationale provided by rule-“ased expert consultation
systems. Tne rationale can be used by the ELICITOR to justify its behavior in
response to user request. The ability to supply rationales should make the
user more confident in the ELICITOR's behavior and provide information the
user can weigh in deciding whether or not to invoke the EDITOR to work under
his own initiative.

CHECKER. The CHECKER provides error checking for knowledge base modifications
entered through the ELICITOR and the EDITOR. It detects and reports to those
modules structural and semantic anomalies in the specifications. Such
anomalies may include a modification that would make a taxonomy circular, a
value for an attribute that is logically inconsistent with the value for a
related attribute, or a rule that will never execute because its activation
conditions are subsumed by other rules. The use of closed input modes by the
ELICITOR may preclude some such errors from occurring, and the £LICITOR and
EDITOR may perform some error checking on their own. However, such checking
will be local to the focus of attention. Generally speaking, the CHECKER's
role is to provide more glebal checking against the existing contents of the
knowledge base to prevent modifications that would produce errors when
considering the overall definition of the knowledge base. This capability
requires that the CHECKER incorporate meta-knowledge about the structures and
syntax of the knowledge base. Such error checking has been a feature of the
knowledge acquisition support of several expert consultation systems (see
Section I11).

In order to avoid the compounding of errorful specifications, the CHECKER
nperates on the contents of each modification entered via the ELICITOR and
IDITNR. Following such checks, the EDITOR and ELICITOR forward modificatinns
to the MANAGER. Information about CHECKER rejections is forwarded to the
RECORDER since it may be of use in planning the elicitation agenda.

MANAGER. The MANAGER frees the user and the other modules from the
responsibility of coordinating the management of the knowledge base and its
physical storage. Rather than operate on separate, local copies of the
knowledge base, the modules share a single virtual knowledge base maintained
by the MANAGER. This centralized management appears efficient for supporting
mixed-initiative elicitation where both the ELICITOR and the EDITOR are usad
in an interleaved manner.

The MANAGFR must maintain a chronology of knowledge bases so that the
FLICTTOR or the user {through the EOITOR or EXERCISERY can access and perhaps
restore prior contexts. The objective is to allow the user to examine and use
prior or alternative knowledqe bases and to pratect the user from loss due to
system orrors. The physical storage state of carlier knowledge bases and the
method for representing successive variations is invisible to the medulies and
user and depends on knowledge the MANAGER has about the underlying operating
system and hardware. The cost of the capability to restore any arhitrary

NAVTRAFEQUIPCEN 82-C-0151-1

prior state would appear too high. [n the short term, the RECORDER and USER
ASSISTANT may contain information sufficient to restore to any ece t context,
but in the longer termn some intermnediate state information needs to be
discarded. The MANAGER preserve. snapshots of the knowledge base at points
specified by the user {through the EDITOR), the FLICITOR, and the RECORDER.
Those modules include heuristic rules for determining critical junctures at
which a complete long-term record of contaxt may be required. The MANAGER may
also determine requirements for saving a full context based on its information
about system state.

USER ASSISTANT. The ISER ASSISTANT monitors and supports all of the user's
interactions with tne ELICITOR, EQITOR, and EXCRCISER. It is modeled roughly
on the capabilities for lov -level user support provided in the INTERLISP
programning system (Teitelmar, et al, 1978). Thece capabilities include
correction of spelling and other simple syntax errors; examining, redoing, and
undoing recent evuonts; support for user-defined procedures and abbreviations
{"macros"): and rcadyv access to context-sensitive help documentation. These
capabilities reduce the consequences of errors and aliow the user to operate
more efficiently by focusing on hic conceptual t2sk rather than low-Tevel
communication with the system. Instead of supporting each of these
capabilities within the user-accessible modules, they are achieved uniformly
within the USER ASSISTANT in order to promate greater consistency.

The USER ASSTSTANT operates by trapping all I/0 with the user, examining
it to determine whether any of its procedures are applicable, recording it,
and passing it on. Its capabilities depend on its knowledge about the
subsystems with which the user interacts {e.q., spellina correction lists,
syntax for open input modes, inverse operatiocns for undoing prior events, and
pointers to information in the help facility).

HELP FACILITY. The HELP FACILITY is a documentation database for the IKAS
used by the user, the CAI FACILITY, and the USER ASSISTANT. It supports two
types of interaction. One, availablie only to diract use by the user, providrs
a documentation "tree" through which the user can browse in a more or 1eoss
top~down manner. In this mode, the documentation provides a well-organized
on-line reference manual. The second type of interaction is query-based arqi
is available bhoth vo the user and the otiier modules. Inputs in a query
language are used to specify database searches and the result is given to the
invoking source.

Both the query language and the result are steoictured in a machine-
readable form to allow uniform use by the other modules. Those modules
deteraine how to Jdisplay or otherwise use the results in their own interacti: -
conlext. Ihe MELP FACILITY has its owa user interfoce for allowing the user
tg compone querfes in g more natural mode of expression or for displaying
resylts in a coasistent human-readable torm. The input interface includes
both «losed (menu) and open {command language) input mode alternatives for
Flexihility.

CAT TATIVITY. Tne CAL FACILITY uses an ad hoc frame-oriented approach (the
rAl analog to a progranmmed text) for delivering a tutorial introduction yn the
use of the IKAS. Much of the content of instruction is retrieved from the

NAVTRAEQUIPCEN 82-C-0151-1

documentation database in the HELP FACILITY. Additional content, such as
examples and questions to test understanding, are stored as a separate
curriculum data base within the CAI FACILITY.

In our design, the CAI FACILITY is not integrated with the main IKAS
modules. Thus, it can not dynamically invoke those modules to present “live"
examples, nor can it obtain any information about the errors the user makes in
initially using the system, when he may switch between "playing” with the
system and accessing the CAI FACILITY. It is limited therefore to simulated
examples and in its responsiveness to the user's particular situation.

We do not believe that a more sophisticated CAI FACILITY is necessary for
those IKAS concepts that entail significant interaction between the DL and KE
prior to DE use of the IKAS (i.e., Alternatives 1 and 2). Under Alternative
3, a more integrated, powerful CAI module may be required to provide self-
contained initial access by users. Work on an initial IKAS development effort
can, however, proceed independently of requirements for CAI capabilities.

SYSTEM FLATURES

The system architecture described above is intended to satisfy several
design constraints. These include:

MIXED INITIATIVE. Knowledge acquisition is either system-directed via the
ELICITGR or user-directed via the EDITOR. The user can take control of
initiative at any time or pass the initiative to the ELICITOR,

DYNAMIC CONTROL OF INITIATIVE. The flexible mixed-initiative interaction is
made possible by dynamic planning of the system's knowledge acquisition
objectives. The PLANNER uses context information saved by the RECORDER to
maintain an agenda of knowledge acquisition topics. Knowledge acquisition
objectives can thereby be altered as necessary to reflect the outcome of prior
interactions, whether they were system- or user-controlled.

CONCEPTUAL SUPPORT FOR THE USER. The ELICITOR uses class-generic knowledge
from the knowledge base and domain-specific knowledge already entered by the
user to generate and interpret user inputs using abstractions consistent with
the user's description of the domain. The EXCRCISER enables the user to
inspect and invoke the host performance system--the KBIS--to test the
performance of the system using the current knowledge base. In addition, the
HELP and CAL facilities can include reference and tutorial information for
supporting the user's understanding of the system.

MODJLARITY. Functions for changing and using the knowledge base share common
resources for supporting user access, for checking inputs for possible errors,
for recording context, and for actual access to the permanent knowledgn hase.
Different aspects of these functions are accomplished by more than one
resource (e.g., context management as a function of time by the RECORDER and
the MANAGER). Modularity is of course desirable in almost all system
architectures. One advantage of modularity in this application is thet it
should enable incremental system development, thereby enhancing feasibility.

gy

NAVTRAEQUIPCEN 82-C-0151-1

It also provides both greater consistency and flexibility in the user
interface.

CONSISTENCY. The MANAGER mediates all interactions between the various
modules and the knowledge base. Both the MANAGEK and RECORDER free the user
from concerns about how to access and update the knowledge base by prnoviding a
uniform access mechanism to all the modules. Differences in implementation of
knowledge base access from these modules should thus be invisible to the user.
For error checking and context recording, the CHECKER and RECORDER should
apply uniforimn mechanisms regardless of whether they are invoked by the
ELICITOR (system initiative) or the EOITOR (user initiative). The ELICITOR
where possible allows user inputs to be accepted via the EDITOR, providing the
user with a consistent input interface under both system and user initiative.
Finally, the USER ASSISTANT provides consistent, low-level monitoring and
intervention for all user inputs to the major user-accessible functions.

FLEXIBILITY. Flexibility is inherent in the user's ability to shift the
responsibility for initiati’e at any time to use either a special ELICITOR
input protocol or the EDITOR when the ELICITOR is in control. Additional
flexibility can be achieved through the USER ASSISTANT, which can implement
tow-level lexical and syntactic error correction and support a consistent set
of alternative 1/0 protocols {e.q., using multiple media, partial input
specification, display formats) for the user to select when interacting with
the three major user functions.

TURN-KEY ACCESSIBILITY AND USE. Suitable implementation of the USER
ASSISTANT, the HELP FACILITY, and the CAI FACILITY could make the system's use
independent of external documentation and human support. The major burden is
on the CAI facility to help the user understand the performance system's
representation ot the domain if that understanding cannot be developed via
prior interaction with a KE.

NAVTRAEQUIPCEN 62-C-0151-1

SECTION VII

CONCLUSIONS

During the course of this project, considerable effort addressed a
careful analysis of the role of the knowledge cngineer (KE) in the process of
building an expert system. This analysis was directed toward the
determination of feasible concepts for automating functions now performed by
human KEs. The nature of the knowledge engineering process and the
practitioners' current understanding of it appear to 1imit, at least for the i
foreseeable future, the scope and generality of possible automation of the i
KE's role in knowledge acquisition.

The KF uses knowledge and information that is incomplete, inconsistent,
and heuristic in attacking his objectives. Part of the problem lies in the
communication gap that exists initially between the KE, the customer, and the
DE. Another part is due to the fact the knowledge-based systems technology--
aithough it ha< been applied to some real-world problenis--is still immature,
Tacking the breadth and depth of applicability necdod for the emergence of
systematic, general methods. As a result, the knowiedge engineering process
is iterative and incremental, with experience gained early in the process used
in subsequent staqges to refiae and revise system objectives and hehavior.

The iterative, incremental nature of knowledge engineering implies that
xnowledge acquisition, a single objective in the entire process, cannot be
isotated from other objectives by automation without interfering with the Ki's
pu~suit of those other objectives. Thus, stand-alone or near stand-alone
automation for knowledge acquisition in building a knowledge-based system is
not feasible at the present.

Given this conclusion, we developed a system concept for automating
knowledge acquisition that avoids a gene.al, comprehensive approach in favor
of a more fcasible, usable alternative. The concept is dased on the notion ot
a class of relited tasks. It proposes that once a knowledge-based sysi>r 5
imnlemented "manually" for one task in the class--thereby achieving all .

Kt 's ohiectives--it would be possible to automate elicitation from domain
experts of knowlodge bases for other tasks i the class. These knowiedg.
bases would be ased onoa system with the same capabilities and architecture as
the firgt wystem. The knowledge acquisition mechanisins would make use of
bnowledge and information obtained in the first effort; hence, they would bhe
apecific tn that knowledge-hased systems architecture for that olass of tasks.
Automated knowicoge acquisition would still proceed incromentally and
iteratively throughout stages of formalization, implementation, and testing.
Hawever, only the knowledge base of the system would be affected by this
process: a1l other aspects of system design and function would remain fixed.

n o e mam

Although limited in scope and generality, t% ‘s approdch to automating
¥iowledge acquisition should he worthwhile faor 18585 with many merhers or
for systems where new knowledge must he added quently over the Titfe of tho
system. It builds upon prior research on assisuvance for knowledge
enqgineering, which adds to its credibility. ‘!owever, it involves sclving
sianificant new problems. Perhaps the most important of these are (1) how to
identify, formalize, and use class-generic abstractions, and (?) how to

NAVTRAEQUIPCEN #2-0-0151-1

provide conceptual suppurt to users that would erahle DEs to use the system
diractiy.

The three altornative applizations of the automated knowledge acquisition
concept presented in Section IV have different costs and expected benefits
according to the criteria considered. iuwever, each appears to present g
promising and productive avenue for re¢lizing new capabilities in automated
knowledge acquisition. Non-techpical consigerations regarding organizational
needs or synergy with on-going research programs ray ultimately influence
which alterr.cive would be most fruitful to pursue. Although our concept
definitions were shaped primariiy by technical considerations, we also were
influenced by our perceptions of those contributicns that would provide high
value to the Navy at this time.

We also determined that a detailed design of the user interface for an
IKAS is not possihle without commitment to a specific, detailed KBIS-IKAS
architecture. However, our discussions with Mevy system builders and DEs
indicated that, while the details of an [KAS' user interface are not
inconsequential, they will prodebly rot deterwmine whether Navy DEs can
effectively use initia! TKAS technology. instead, selection of users and
high-level user interface charecteristics not identified with particular media
or interaction protocols are more critical for a successful IKAS
implenentation for a Havy training system. We therefore made the following
recommendations, reflected in the architecture proposed in Section VI, for
pursuing further design of an IKAS:

4. Fmphasize conceptual support and transparency.

h. Desiagn the knawledge acquisition strategy to be modular with
respect to dcquiring different types of knowledge.

T.oProside extensive cn-line help/documentation facilities and
intelligent cantext wanagement.

d. Defar comnitments on other user interface issues in an
incremental design and develanment ipproach.

We beiirve that by following these recommendaticns further resgarch con
bulld upnn the results of the present nroject to develsn a first effective
cratotype ’

TR
PR N

G2

ot ‘h%‘ o -

NAVTRAEQUIPCEN 82-C-0151-1

REFERENCES

Alperovitch, Y. A knowledge acquisition system for plar structuring. Doctoral
dissertation, University of California, Los AngeTes, 1982.

Barr, A., and Feigenbaum, E. (Eds.)}. The handbook of artificial intelligence
{(Vol. 2). Los Altos, CA: William Kaufmann, Inc., 1987. T

S8ennett, }. S. Persona) communication.

Brown, J. S. Uses of artificial intelligence and advanced computer technology
in education. In R. J. Seidel and M. Rubin (£ds.), Computers and

communications: Implications for education. New York: Academic Press,
w7, ——— T T

Buchanan, 8. G. Research on expert systems (Report No. STAN-CS-81-837).
Stanford, CA: Department of Compufer Science, Stanford University, 1981.

juchanan, B. G., Barstow, D., Bechtel, R., Bennett, J., Clancey, W.,
Kulikowski, C., Mitchell, T., & Waterman, D. A. Constructing an expert

system. In F. Hayes-Roth, D. Waterman, and D. Lenat (Eds.), Building
expert systems. Reading, MA: Addison-Wesley, 1983. In press.

Clancey, W. J. Methodology for building an intelligent tutoring system {Report
No. STAN-CS-81-8947. Stanford, CA: TDepartment of Tomputer Science,

Stanford University, 1981.

“rawford, A. M., and Hollan, J. D. Development of a computer-based tactical
training system (Special Report 83-137. San Diego, TAT Navy PersonncT
R&D Center, 1983.

NDavis, R. Interactive transfer of expertise: Acquisition of new infercnoe
rules. In Proceedings of the Fifth Internaticnal Joint Conference on
Artificial TntelTigence. TJCAI, 1877. ~ ~~~~— ~—~ = =777 B

Nuda, R., Gaschniq, J., Hart, P. E., Konolige, K., Rehoh, R., Barret*,
“lTocum, \J. Development of the PROSPLCTUR censultation system for miner:
exploration {Final Report, SRI Profects 5321 and 6415) MenTo Park, rA:
R Tnternational, 1978.

Frman, .., Hayes-Roth, F., Lesser, V., and Reddy, R. The Hearsay-Il speocch
understanding system: Integrating knowledge to reduce uncertainty.
Computing Surveys, 1980, 12(2), 213-252.

Fain, .J., Gorlin, D., Hayes-Roth, F., Rosenschein, S., Sowizral, H., and

Waterman, D. The ROSIE Language Reference Manual (Rand Note N-1647-ARPA}.

Fixes, A. F., and Nilsson, Y. J. STRIPS: A new apprcoach to the applicatic. o
theorem proving to problem solving. Artificial Intelligence, 1671, 2,
184-208. T T

a1

B

—— -

L AN 1w e

1]

NAVTRALOQIIPCEN 82-~C-0151-1

Hayes-Roth, 8. Human plannin rocesses (Report R-2670-0NR). Sarnta Monica, (A:
The Rand Co‘rpora%fon, ISBET'"_"*_

Lindsay, R., Buchanan, B. G., Feigenbaum, E. A., and Lederberq, .J. DEHORAL.
New York: McGraw-Hill, 1980.

Martin, J. Design of man-computer dialogues. [Enjlewood Cliffs, NJ:
Prentice-Hall, 1976.

McCandless, T. Computer-based tactical memorization system (Technical Note

81-8). San Uiegn, CA:™ Navy Personnet 28D Center, 1987.

McDermott, J. R1: an expert in the computer systoas domain. In Procecdiags of
the 1st Annual National Counference cn Artificial Intelligence. American
Kssociation Tor Artificial TntelTigence, 1780,

>

Nii, H. P., and Aiello, N. AGE {Attempt to Generalize): A knowledge-based
program for building knowiedge-based programs . In Proceedings of the 6th
International Joint Conference on Artificial Intelligence. TJCAI, 1979,

Nii, Po, Feigenbaum, ., Anton, J., and Rockmure, A. Signal-to-symbol
transformation: HASP/SIAP case study. Al Magazine, 1982, 3{2), 23-35.

Peari, J., Leal, A, and Saleh, J. GODDESS: A Goal-Directed Necision
Structuring System. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1982, PAMI-4(3), 250-262.

Ramsey, H. R., and Atwood, M. E. Human factors in computer systoms: a review
of the Titerature (Tech. Rep. SAT-79-TIT-DEN). TngTewood, TOT Science
AppTications, Inc., 1979.

Ramsey, H. R., Atwood, M. F., and Kirshbaum, °. J. A critically annotated
bibliography of the literature of humar factors in computer systens
TTech. Rep. SAT-78-07C-TFNT. Englewood, TN: " Science AppTications, 1nc
[are,

Reboh, 2. Knowledye engineeriny techniques and tool
environnent {Technical Note 243). Menlo Park,

1937,

in the PROSPLCTOR

s
CAT SRT Tnternationai.

Pumcthart, Do Toword an i-teractive model of reading (Tech. fiep. CHIP
Technica! Mepert Mo B6T. San Diego, TA: University of California, San
Dieqgy, 1976.

Shortliffe, £, H. Computer-base.d medical consultations: MYCIN. New York:
Amerizan Elsevier, 1976, 7~ 77 o

Simpson, W, A tuman-factors style guide for prog-un design. BYTE, 1982, 7.4),
138-132. ’

stefik, Mo, Adkans Jo) Balze-, K., fenort, 70 Pirnbaum, Lo, Hayes-Roth, o+ o
Sacerdoti, . The architecture of o oort systens. In VL Hayes-Roth
O, Waternan, and D. fenat (Eds.), faitding export systeas. Keading Mo
Addisnn-desley, 1983, In press.

AD-A139 019 ALTERNATIVE KNOWLEDGE ACQUISITION INTERFACE STRUCTURES

{U) PERCEPTRONICS INC MENLO PARK CA KNOWLEDGE SYSTEMS
BRANCH K T WESCOURT ET AL. DEC 83 PPAFTR-1131-83-1
UNCLASSIFIED NAVTRAEQUIPC-82-C-0151-1 F/G 5/9 NL

o

I
2

FEFEEE

EEEE
EEE

irr
[
FF

=
®

||I6

|||||>

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

'r' - s l-l!-!-lI!llIlIIll!llll!ll'lll!'!lIHlllF!l!Imn!!!ll!!!!ll--u-nw--m—-ﬁ-v—ﬂ
|
1

NAVTRAEQUIPCEN 82-C-0151-1

Suwa, M., Scott, A. C., and Shortliffe, E. An approach to verifying
completeness and consistency in a rule-based expert system. Al Magazine,
1982, 3(4}), 16-21.

Teitelman, W., et al. Interlisp reference manual. Bolt Beranek and Newman,
Inc. and XEROX PaTo ATto Eesearcﬁ Center, 1978.

Thorndyke, P. A rule-based approach to cognitive modeling of real-time
decision making. In Proceedings of the Workshop on Cognitive Modeling of

Nuclcar Plant Control Room Uperators. Oa ge Natfonal Laboratories,

v

Thorndyke, P., McArthur, D., and Cammarata, S. AUTOPILOT: A distributed
planner for air fleet control. In Proceedings of the Seventh
' International Conference on Artificial Intelligence. TJCAY, 1981.

van Melle, W. A domain-independent production-rule system for consultation
programs. In Proceedings of the 6th International Joint Conference on
Artificial InteTTigence . 1JCAT, 1979,

Weiss, S. M. and Kulikowski, C. A. EXPERT: A system for developing
consultation models. In Proceedings of the 6th International Joint
Conference on Artificial InteTTigence. TJCAT, 1979. !

Wipke, W. T., Braun, H., Smith, G., Choplin, F., and Sieber, W. SECS--
Simulation and Evaluation of Chemical Synthesis: Strategy and planning. 1
In W. T. Wipke and W. J. House (Eds.), Computer-assisted organic
synthesis. Washington, D.C.: American Chem Ig77T”

fcal Society,

o e e s : _ _1[1

NAVTRAEQUIPCEN 82-C-0151~1

1 PR o R f, T g i M RN D, T T o AT W
- Rl 2 ¢ W X gl e, . N AP R i fa R i
) - e) ¥ ek R »"“f‘\‘;-w TR N

NAVTRAEQUIPCEN 82-C-0151-1

APPENDIX A
ILLUSTRATIVE INSTRUCTIONAL KNOWLEDGE ACQUISITION DIALOGUE

This Appendix presents a hypothetical dialogue between a DE and an KE who
are working together to define knowledge to be used by a KBIS for surface Navy
tactics training. It is intended to illustrate some of the requirements for
eliciting knowledge used for trainee performance modeling (see IKAS
Alternative 1 in Section IV). The dialogue assumes the KE and DE have been
interacting for a considerable time and that a competence model is largely
completed.

* k k k Xk

KE: We've considered the procedures and rules for successful defense of a
single ship from surface and air threats. Now let's consider how things can
be done wrong if a TAO lacks that knowledge. In particular, I want you to
think about training exercises you've supervised and the errors you've
frequently seen and what causes them. Let's 1imit ourselves first to “weapons
free" situations. You indicated earlier that decisions were contingent on how
strongly you believed your opponent had sufficient data to target you. Are
there important errors that you've seen there?

DE: Well, yes. It's mostly a case of keeping track of his and your emissions.
T guess one common mistake is to forget about emissions you may have produced
before you knew he was there, like HF or even UHF communications. I think I
told you that if you detect him passively and you have put out some emissions
you should start a zig-zag if you are authorized to.

KE: So in that type of situation, not seeing a zig-zig would lead you to
E'éHever as an observer, that a TAD either had forgotten about the emissions
or didn't know that a zig-zag was the thing to do then?

DE: Yes, most of the time. Depending on what type of opponent he believes he
Js facing, he could decide 1t was very unlikely that the opponent could get
targeting information passively from the emissions. In that case, he might
not zig-zag. And remember, you can't always zig-zag; it depends on the
formation and on whether you happen to be on a ship with certain types of
towed sonar deployed.

Do atis ity

KE: Right, I can see that here in my notes about manuevering. You gave me
those constraints before.

DE: Remember too the deception angle. If you really think he has targeting
data and fs just waiting to get a better shot, then you might buy some time to
get your own systems ready to fire by NOT zig-zagging. So, it's not all that
simple to say from not seeing zig-zagging that a TAO has not been thinking
about his emissfons. It's a matter of judgment. Like I told you, you don't
want to be too cute. If the situatfon fs hot and you gave him some passive

NAVTRAEQUIPCEN 82-C-0151-1

data and now you have some from him, you really want to think about going
active first to get targeting data.

KE: So, the way you would really evaluate a TAD's performance is whether he
Tét the opponent get off the first shot on a good intercept heading?

DE: Yes, it's pretty imprecise--sometimes you can weigh the odds as best you
can and take the actions you know are best and still come out on the short
end. 1'd need to see a guy apparently miss the fact that he had been targete-
several times before I'd conclude that he was not considering his emissions
history or acting on it to the best of his ability. Of course, if it came up
in a training exercise, I could ask him about it in the debriefing if it
seemed to impact the outcome.

KE: Suppose you wanted to figure out whether a TAO trainee using a training
simulator like NAVTAG had this problem just by looking at his performance.
What type of situations would you set up?

DE: I'd put him on a low-capable ship and give him some INTEL about some high-
capable oppanents; that way he wouldn't be quick to go on the offensive
without first hoping ORANGE would give him some good data that could
compensate for the capability imbalance. I'd put no constraints on his
manuevering. Then 1'd set him up by having him respond to some communication
and at some later time pick up some ambiguous passive emission that was
ORANGE-originated but insufficient for identification. Then I could look for
a zig-zag with more certainty. 1'd give him a few exercises in which those
vwere the features before any engagement actually commenced.

KE: What about his possible belief that the enemy hadn't been able to target
him, or an attempt at deception?

DE: Well, on the first, those high-capability ships generally have the best
ESM systems, so if his INTEL says that's what he might expect, he wouldn‘t
want to ignore them. Also, instead of just a COMM emission I could set the
simulator to give him a real emissions error--tell him his ECM equipment or a
weapons control radar accidently went on for a few seconds. That's real
unlikely, but possible, As to the deception, if I set up the trainer to
ignore his deception and hit him with an SSM if he didn't zig-zag, then after
a few exercises he'd be zig-zagging if he knew he was supposed to do so or if
he wasn't forgetting his emissions history. Only problem with that is
discouraging his use of deception when it might be his best chance. 1'd
address that directly if I were an instructor after I was sure a trainee knew
the best non-deception response to the situations.

KE: Let's talk about situations now where BLUE believes he's been targeted
with regard to bearing and wants to initiate the engagement. Those are where
he is on a high-capable platform or has an important defensive role for some
other HVUs.

DE: That's right. The biggest problems are not giving ORANGE better targeting
data before you are ready to fire yourself.

KE: Let's talk first about the case where BLUE hasn't seen a surveillance
radar emission from ORANGE.

NAVTRAEQUIPCEN 82-C-0151-1

DE: Well one problem I've seen there is BLUE's use of his own surveillance
radar. First, you don't want to use it if your EW people tell you the track's
source seemed to be at a range outside your destruction zone. If you do, all
you are going to do is confirm your identity and maybe give him track info.

It may allow you to establish a better track on him but you can't do anything
about it.

KE: You told me that in that case you should steam toward the target's
bearing, so that the error is in not executing that procedure when the
situation warrants it--that is, when you have suggestive evidence that the
target is out of range.

DE: Right. Except of course in the case where your SSMs are mounted aft and
you might not be able to recover fast enough to shoot if you are in range and
he shoots first. That's the tricky one if you are determined to be offensive.

KE: You said "first” problem before: what other problems are there in using
surveillance radar at that point?

DE: It's turning it on continuously right away instead of taking a snapshot.
That gives him better targeting and all you need is a snapshot to determine
how to engage him with the fire control systems. You don't want to monitor
with your surveillance radar unless you've already seen his fire control radar
Tight off.

NAVTRAEQUIPCEN 82-C-0151-1

DISTRIBUTION LIST

Naval Training Equipment Center 25
N-71
Orlando, FL 32813

Technical Library

Naval Training Equipment Center
Orlando, FL 32813

Defense Technical Information Cen. 12
Cameron Station

Alexandria, VA 22314

Keith Wescourt 50
Senior Computer Scientist

Perceptronics

Knowledge Systems Br.

545 Middlefield Rd., Suite 140

Menlo Park, CA 94025

CDR Daniel F. Hassett

(Code 32-06)

Fleet Combat Training Center, Pacific
San Diego, CA 92147

LT Skip McVay

(Code 32-06)

Fleet Combat Training Center, Pacific
San Diego, CA 92147

LT William Bloomberg
Fleet Combat Training Center, Pacific
San Diego, CA 92147

LT Richard Coleman
Fleet Combat Training Center, Pacific
San Diego, CA 92147

CDR Dave Anderson
Navy Personnel R&D Center
San Diego, CA 92152

SR CHIEF William Smith
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Alice Cravwford
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Barbara MacDonald
Navy Personnel R&D Center
San Diego, CA 92152

T T I AR "I 17 TR e *

Dr. Ed Hutchins
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Jim Hollan
Navy Personnel R&D Center
San Diego, CA 92152

Mr. Robert Bechtel

Naval Ocean Systems Center

San Diego, CA 92152

Dr. Marshall Farr

Office of Naval Research
Code 442PT

800 N. Quincy Street
Arlington, VA 22217

Dr. Henry Halff

Office of Naval Research
Code 442PT

800 N. Quincy Street
Arlington, VA 22217

Dr. Martin Tolcott
Office of Naval Research
Code 442

800 N. Quincy Street
Arlington, VA 22217

Dr. William Vaughan
Office of Naval Research
Code 442

800 N. Quincy Street
Arlington, VA 22217

Mr. Alan Meyerowitz
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Dr. Robert Sasmor

Army Research Institute
5G01 Efsenhower Avenue
Alexandria, VA 22333

Dr. Harold F. 0'Neil, Jr.
Army Regsearch Insti:ute
5001 Eisenhower Avenue
Alexandria, VA 22333

FIVNPITR Ty

e—tn 3+
e e A TR

Dr. Joseph Psotka

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Ms. Judith Orasino
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Mr. Edgar Johnson

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Mr. Stan Halpin

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

COL Neale Cosby

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Mr. Joseph Yasutake
AFHRL (LRT)
Lowry AFB, Colorado 80230

Dr. Genevieve Haddad
Life Science Directorate
AFOSR/NL - Bldg 410
Bolling AFB

Washington, DC 20332

Dr. Jude Franklin
Naval Research Laboratory,
Washingten, DC 20375

Mr. Gordon Powell

Naval Surface Weapons Center Dr. Ronald Hofer

Indian Head, MD 20640

Mr. Jack Wozencraft
Naval Postgraduate School
Monterey, CA 91940

MA.J Jack Thorpe
DARPA

1400 Wilson Blvd
Arlington, VA 22209

NAVTRAEQUIPCEN 82-C-0151-1

Dr. Robert Kahn
DARPA

1400 Wilson Blvd
Arlington, VA 22209

Mr. Ron Ohlander
DARPA

1400 Wilson Blvd
Arlington, VA 22209

Mr. Norton Fowler
Rome Air Development Center
Griffiss AFB, NY 13441

Mr. Al Barnum '
Rome Air Development Center
Griffiss AFB, NY 13441

Mr. Yale Smith
Rome Air Development Center
Griffiss AFB, NY 13441

Mr. Richard Metzger
U.S. Army Human Engineering Laboratory
Aberdeen Proving Ground, MD 21005

Dr. Benjamin Cummings

U.S. Army Human Engineering Laboratory
Aberdeen Proving Ground, MD 21005

Dr. John Weiss
U.S. Army Human Engineering Laboratory
Aberdeen Proving Ground, MD 21005

Dr. Henry R. Cook

Defense Mapping Agency
Code 7510 BLDG 56

U.S. Naval Observatory

Washington, DC 20305

'M TRADE-E
Naval Training LEquipment Center
Orlando, FL. 32813

2 of 2

T - - - CIE Loy
y =, R o R e 3 . JERARTSITTeY) o A 2 .
s il L < RS T ko) Mohall G LARL AL L

